Publications by authors named "Uday N Maiti"

Biomass-derived carbon materials are gaining attention for their environmental and economic advantages in waste resource recovery, particularly for their potential as high-energy materials for alkali metal ion storage. However, ensuring the reliability of secondary battery anodes remains a significant hurdle. Here, we report Areca Catechu sheath-inner part derived carbon (referred to as ASIC) as a high-performance anode for both rechargeable Li-ion (LIBs) and Na-ion batteries (SIBs).

View Article and Find Full Text PDF

Concomitant achievement of all three performance pillars of a supercapacitor device, namely gravimetric, areal, and volumetric capacitance is a grand challenge. Nevertheless, its fulfilment is indispensable for commercial usage. Although, high compactness is the fundamental requirement to achieve high volumetric performance, it severely affects ion transportation in thick electrodes.

View Article and Find Full Text PDF

High overpotentials required to cross the energy barriers of both hydrogen and oxygen evolution reactions (HER and OER) limit the overall efficiency of hydrogen production by electrolysis of water. The rational design of heterostructures and anchoring single-atom catalysts (SAC) are the two successful strategies to lower these overpotentials, but realization of such advanced nanostructures with adequate electronic control is challenging. Here, the heterostructure of edge-oriented molybdenum selenide (MoSe ) and nickel-cobalt-selenide (NiCo Se ) realized through selenization of mixed metal oxide/hydroxide is presented.

View Article and Find Full Text PDF

Multistage field emitters consisting of organic/inorganic hybrid nanostructures with branched geometry are designed via a two-step protocol: a simple wet chemical method followed by a vapor-solid-phase technique. (Cu/Ag)TCNQ (copper/silver-7,7,8,8-tetracyanoquinodimethane) nanowires (NWs) were grown hierarchically on zinc oxide (ZnO) nanorods (NRs) to form ZnO-(Cu/Ag)TCNQ heterostructure assemblies. By monitoring the metallic Cu and Ag coating thickness on ZnO NRs, precise control over the morphology and orientations of the secondary organic NWs is achieved.

View Article and Find Full Text PDF

Atomic level engineering of graphene-based materials is in high demand to enable customize structures and properties for different applications. Unzipping of the graphene plane is a potential means to this end, but uncontrollable damage of the two-dimensional crystalline framework during harsh unzipping reaction has remained a key challenge. Here we present heteroatom dopant-specific unzipping of carbon nanotubes as a reliable and controllable route to customized intact crystalline graphene-based nanostructures.

View Article and Find Full Text PDF

Electrochemical oxygen redox reactions are the crucial elements for energy conversion and storage including fuel cells and metal air batteries. Despite tremendous research efforts, developing high-efficient, low-cost, and durable bifunctional oxygen catalysts remains a major challenge. We report a new class of hybrid material consisting of subnanometer thick amorphous cobalt hydroxide anchored on NCNT as a durable ORR/OER bifunctional catalyst.

View Article and Find Full Text PDF

A scalable and controllable nanoscale perforation method for graphene is developed on the basis of the two-step thermal activation of a graphene aerogel. Different resistance to the thermal oxidation between graphitic and defective domains in the weakly reduced graphene oxide is exploited for the self-limiting nanoscale perforation in the graphene basal plane via selective thermal degradation of the defective domains. The resultant nanoporous graphene with a narrow pore-size distribution addresses the long-standing challenge for the high-level doping of graphene with lattice-mismatched large-size heteroatoms (S and P).

View Article and Find Full Text PDF

Energy-efficient CO2 capture is a stringent demand for green and sustainable energy supply. Strong adsorption is desirable for high capacity and selective capture at ambient conditions but unfavorable for regeneration of adsorbents by a simple pressure control process. Here we present highly regenerative and selective CO2 capture by carbon nitride functionalized porous reduced graphene oxide aerogel surface.

View Article and Find Full Text PDF

Graphene oxide (GO) is aqueous-dispersible oxygenated graphene, which shows colloidal discotic liquid crystallinity. Many properties of GO-based materials, including electrical conductivity and mechanical properties, are limited by the small flake size of GO. Unfortunately, typical sonochemical exfoliation of GO from graphite generally leads to a broad size and shape distribution.

View Article and Find Full Text PDF

Substitutional heteroatom doping is a promising route to modulate the outstanding material properties of carbon nanotubes and graphene for customized applications. Recently, (nitrogen-) N-doping has been introduced to ensure tunable work-function, enhanced n-type carrier concentration, diminished surface energy, and manageable polarization. Along with the promising assessment of N-doping effects, research on the N-doped carbon based composite structures is emerging for the synergistic integration with various functional materials.

View Article and Find Full Text PDF

Cost effective hydrogen evolution reaction (HER) catalyst without using precious metallic elements is a crucial demand for environment-benign energy production. Molybdenum sulfide is one of the promising candidates for such purpose, particularly in acidic condition, but its catalytic performance is inherently limited by the sparse catalytic edge sites and poor electrical conductivity. We report synthesis and HER catalysis of hybrid catalysts composed of amorphous molybdenum sulfide (MoSx) layer directly bound at vertical N-doped carbon nanotube (NCNT) forest surface.

View Article and Find Full Text PDF

Directed self-assembly of a block copolymer is successfully employed to fabricate device-oriented graphene nanostructures from CVD grown graphene. We implemented mussel-inspired polydopamine adhesive in conjunction with the graphoepitaxy principle to tailor graphene nanoribbon arrays and a graphene nanomesh located between metal electrodes. Polydopamine adhesive was utilized for facile and damage-free surface treatment to complement the low surface energy of pristine graphene.

View Article and Find Full Text PDF

Organic charge transfer (CT) complexes initiated a growing interest in modern electronic devices owing to their easy processability and unique characteristics. In this work, three-dimensional field emitters comprising metal-organic charge transfer complex nanostructures of AgTCNQ and CuTCNQ (TCNQ, 7,7,8,8-tetracyanoquinodimethane) over flexible fabric substrate are realized. Deliberate control over the reaction parameter during organic solid phase reaction leads to modification in structural parameters of the nanowires (i.

View Article and Find Full Text PDF

Outstanding pristine properties of carbon nanotubes and graphene have limited the scope for real-life applications without precise controllability of the material structures and properties. This invited article to celebrate the 25th anniversary of Advanced Materials reviews the current research status in the chemical modification/doping of carbon nanotubes and graphene and their relevant applications with optimized structures and properties. A broad aspect of specific correlations between chemical modification/doping schemes of the graphitic carbons with their novel tunable material properties is summarized.

View Article and Find Full Text PDF

Large scale high yield cadmium sulfide (CdS) nanowires with uniform diameter were synthesized using a rapid and simple solvo-chemical and hydrothermal route assisted by the surfactant cetyltrimethylammonium bromide (CTAB). Unique CdS nanowires of different morphologies could be selectively produced by only varying the concentration of CTAB in the reaction system with cadmium acetate, sulfur powder and ethylenediamine. We obtained CdS nanowires with diameters of 64-65 nm and lengths of up to several micrometers.

View Article and Find Full Text PDF

A multistage field emitter based on graphene-linked ZnO nanowire array is realized by means of spin-coating a graphene dispersion (reduced graphene oxide) over a nanostructured platform followed by plasma modification. Spin-coating leads to interlinking of graphene sheets between the neighboring nanowires whereas plasma etching in the subsequent step generates numerous ultra-sharp graphene edges at the nanowire tips. The inherent tendency of graphene to lay flat over a plane substrate can easily be bypassed through the currently presented nanostructure platform based technique.

View Article and Find Full Text PDF

A three dimensional field emitter comprising hierarchical nanostructures of graphene over flexible fabric substrate is presented. The nanostructuring is realized through plasma treatment of graphene, coaxially deposited over individual carbon fiber by means of simple aqueous phase electrophoretic deposition technique. Hierarchical graphene nanocone, acting as a cold electron emitter, exhibits outstanding electron emission performance with a turn-on field as low as 0.

View Article and Find Full Text PDF

Three dimensional (3-D) assemblies of ZnO nanoneedles have been synthesized on silicon substrate by a unique chemical process. Each nanoneedle in the assemblies was hexagonal faceted having [001] growth direction and tip diameter approximately 20 nm. The growth of 3-D assemblies was governed by the initial nuclei formation, followed by their aggregation and subsequently nanoneedle formation from each nucleus.

View Article and Find Full Text PDF