Developing bioequivalent (BE) generic products of complex dosage forms like intravitreal implants (IVIs) of corticosteroids such as dexamethasone prepared using hot-melt extrusion (HME), based on biodegradable poly (lactide-co-glycolide) (PLGA) polymers, can be challenging. A better understanding of the relationship between the physicochemical and physicomechanical properties of IVIs and their effect on drug release and ocular bioavailability is crucial to develop novel BE approaches. It is possible that the key physicochemical and physicomechanical properties of IVIs such as drug properties, implant surface roughness, mechanical strength and toughness, and implant erosion could vary for different compositions, resulting in changes in drug release.
View Article and Find Full Text PDFBiomed Pharmacother
January 2024
Chromodomain helicase DNA-binding protein 1 like (CHD1L) is an oncogene that promotes tumor progression, metastasis, and multidrug resistance. CHD1L expression is indicative of poor outcomes and low survival in cancer patients with various cancer types. Herein, we report a set of CHD1L inhibitors (CHD1Li) discovered from high-throughput screening and evaluated using enzyme inhibition, 3D tumor organoid cytotoxicity and mechanistic assays.
View Article and Find Full Text PDFThe purpose of this study was to determine corneal permeability and uptake in rabbit, porcine, and bovine corneas for twenty-five drugs using an N-in-1 (cassette) approach and relate these parameters to drug physicochemical properties and tissue thickness through quantitative structure permeability relationships (QSPRs). A twenty-five-drug cassette containing β-blockers, NSAIDs, and corticosteroids in solution at a micro-dose was exposed to the epithelial side of rabbit, porcine, or bovine corneas mounted in a diffusion chamber, and the corneal drug permeability and tissue uptake were monitored using an LC-MS/MS method. Data obtained were used to construct and evaluate over 46,000 quantitative structure-permeability (QSPR) models using multiple linear regression, and the best-fit models were cross-validated by Y-randomization.
View Article and Find Full Text PDFDue to high structural flexibility, multidrug carrying capability, and tunable size, dendrimers have been used as suitable carriers for ophthalmic drug delivery. Drug molecules can be either encapsulated or chemically coupled to dendrimers. The nanoscopic size, spheroidal shape, and cationic surface of polyamidoamine (PAMAM) dendrimers promote their interaction with the cornea and result in prolonged precorneal retention.
View Article and Find Full Text PDFCrystallins, small heat shock chaperone proteins that prevent protein aggregation, are of potential value in treating protein aggregation disorders. However, their therapeutic use is limited by their low potency and poor intracellular delivery. One approach to facilitate the development of crystallins is to improve their activity, stability, and delivery.
View Article and Find Full Text PDFThe purpose of this study was to develop a validated LC-MS/MS analytical method for the simultaneous analysis of a large cassette containing a wide range of drug substances with positive, negative, or neutral charge and further apply the method to assess octanol partition coefficient and eye tissue recovery of the drug cassette. A twenty-seven-drug cassette (N-in-one) including beta blockers, NSAIDs, and corticosteroids that range from extremely hydrophilic (sotalol) to very hydrophobic (triamcinolone hexacetanide) was used to develop an LC-MS/MS assay using QTrap 4500. An LC-MS/MS method based on gradient elution, with an eighteen-minute run time including equilibration time, was developed and validated for the rapid and simultaneous quantitation of drugs with a wide range of lipophilicities.
View Article and Find Full Text PDFChromodomain helicase DNA-binding protein 1 like (CHD1L) is an oncogene implicated in tumor progression, multidrug resistance, and metastasis in many types of cancer. In this article, we described the optimization of the first lead CHD1L inhibitors (CHD1Li) through drug design and medicinal chemistry. More than 30 CHD1Li were synthesized and evaluated using a variety of colorectal cancer (CRC) tumor organoid models and functional assays.
View Article and Find Full Text PDFThe successful application of nanomedicine against glioma is basically hooked on to the fabrication of specific and efficient glioma targeted multifunctional theranostics. Herein, through an easy synthetic methodology, we fabricated a type of novel multifunctional theranostic nanoplatform comprising of anisotropic gold nanoroses (AuNs) co-loaded with doxorubicin (DOX) and the near-infrared (NIR) active/responsive dye, indocyanine green (ICG). The tailored nanotheranostics upon being exposed to NIR laser helped in achieving combinatorial chemo-phototherapy along with optical cell imaging.
View Article and Find Full Text PDFTo investigate the impact of oxidative stress, which is a hallmark of Fuchs dystrophy, on the barrier function of the corneal endothelial cells. Experiments were carried out with cultured bovine and porcine corneal endothelial cells. For oxidative stress, cells were supplemented with riboflavin (Rf) and exposed to UV-A (15-30 min) to induce Type-1 photochemical reactions that release HO.
View Article and Find Full Text PDFAberrant Sumoylation-mediated protein dysfunction is involved in a variety of oxidative and aging pathologies. We previously reported that Sumoylation-deficient Prdx6K linked to the TAT-transduction domain gained stability and protective efficacy. In the present study, we formulated wild-type TAT-HA-Prdx6 and Sumoylation-deficient Prdx6-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) to further enhance stability, protective activities, and sustained delivery.
View Article and Find Full Text PDFTo address the need for noninvasive monitoring of injectable preformed drug delivery implants in the eye, we developed noninvasive methods to monitor such implants in different locations within the eye. Cylindrical polymeric poly(lactide-co-glycolide) or metal implants were injected into isolated bovine eyes at suprachoroidal, subretinal, and intravitreal locations and imaged noninvasively using the cSLO and OCT modes of a Heidelberg Spectralis HRA + OCT instrument after adjusting for the corneal curvature. Length and diameter of implants were obtained using cSLO images for all three locations, and the volume was calculated.
View Article and Find Full Text PDFEur J Pharm Biopharm
August 2021
Purpose: To develop gold nanoparticles-loaded contact lens ("GoldinLens") to bind a significant mass of cystine on the surface of the gold nanoparticles (GNPs) for cystinosis treatment due to the reaction between cystine and gold.
Methods: The GoldinLens was manufactured by synthesizing GNPs inside the preformed contact lens matrix by first loading the lenses (Moist and TrueEye) with gold precursor followed by reduction (with sodium borohydride or trisodium citrate) to gold atoms, which nucleated to GNPs inside the polymeric matrix. The lenses were characterized by SEM, XRD, UV-Vis spectroscopy and mass of GNPs loaded in the lens was determined by direct measurement of mass.
The deadly pandemic, coronavirus disease 2019 (COVID-19), caused due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has paralyzed the world. Although significant methodological advances have been made in the field of viral detection/diagnosis with 251 in vitro diagnostic tests receiving emergency use approval by the US-FDA, little progress has been made in identifying curative or preventive therapies. This review discusses the current trends and potential future approaches for developing COVID-19 therapeutics, including repurposed drugs, vaccine candidates, immune-modulators, convalescent plasma therapy, and antiviral nanoparticles/nanovaccines/combinatorial nanotherapeutics to surmount the pandemic viral strain.
View Article and Find Full Text PDFCorticosteroids remain the mainstay of the treatment for various ocular conditions affecting the ocular surface, anterior and posterior segments of the eye due to their anti-inflammatory, anti-oedematous, and anti-neovascularization properties. Prednisolone, prednisolone acetate, dexamethasone, triamcinolone acetonide, fluocinolone acetonide, and loteprednol etabonate are amongst the most widely used ophthalmic corticosteroids. Corticosteroids differ in their activity and potency in the eye due to their inherent pharmacological and pharmaceutical differences.
View Article and Find Full Text PDFAlthough once daily anti-glaucoma drug therapy is a current clinical reality, most therapies require multiple dosing and there is an unmet need to develop convenient, safe, and effective sustained release drug delivery systems for long-term treatment to improve patient adherence and outcomes. One of the first sustained release drug delivery systems was approved for the reduction of intraocular pressure in glaucoma patients. It is a polymeric reservoir-type insert delivery system, Ocusert™, placed under the eyelid and on the ocular surface for zero-order drug release over one week.
View Article and Find Full Text PDFBackground: The hyperpolarizing activity of γ-aminobutyric acid A (GABA) receptors depends on the intracellular chloride gradient that is developmentally regulated by the activity of the chloride extruder potassium (K) chloride (Cl) cotransporter 2 (KCC2). In humans and rodents, KCC2 expression can be detected at birth. In rodents, KCC2 expression progressively increases and reaches adult-like levels by the second postnatal week of life.
View Article and Find Full Text PDFTo determine the effect of particle size and viscosity of suspensions on topical ocular bioavailability of budesonide, a corticosteroid drug. Budesonide microparticle and nanoparticle (MP and NP) suspensions were prepared with or without homogenization and microfluidization. Using different grades of hydroxyl propyl methyl cellulose, low viscosity NP (NP-LV) and low and high viscosity MP (MP-LV and MP-HV) were prepared.
View Article and Find Full Text PDFTo determine the baseline choroid-retina fluorescence signal in Royal College of Surgeon (RCS) rats of various ages with different degrees of retinal degeneration and assess the persistence of intravitreal nanoparticles. In RCS rats of age 6, 12, and 20 weeks and Sprague Dawley (SD) rats of age 6 and 20 weeks, baseline eye tissue fluorescence and retinal thickness were recorded noninvasively using fluorophotometry and optical coherence tomography (OCT), respectively. Further, 20-nm carboxylate-modified fluorescent particles were injected intravitreally in the above groups of rats, and the depth-wise fluorescence signal was monitored over 7 days using fluorophotometry and confocal laser scanning ophthalmoscopy (cSLO).
View Article and Find Full Text PDFReliable drug therapy with injectable intravitreal implants requires implants of consistent quality. The purpose of this study was to prepare dexamethasone-poly(d,l-lactide-co-glycolide) (PLGA) biodegradable implants and assess implant quality within and between batches for different polymer compositions. Implants containing 20% w/w dexamethasone with 3 theoretical rates of release (fast, intermediate, and slow) were manufactured with decreasing proportion of acid-terminated PLGA (50:50) and increasing proportion of ester-terminated PLGA (50:50) in a batch process using hot-melt extrusion.
View Article and Find Full Text PDFThe in vitro drug release in an aqueous medium is a critical performance metric for a sustained release drug product. During long-term release studies, drugs may degrade in the release medium, and such degradation can lead to errors in drug release quantitation. Using dexamethasone as a model drug and LC-MS/MS methods employing dexamethasone-d as an internal standard, this study identified that dexamethasone can degrade into 13 major degradation products in phosphate buffered saline (PBS) as a function of time, temperature (25, 37, and 45°C), and light exposure.
View Article and Find Full Text PDFOcular drug delivery offers unique challenges and opportunities in the era of novel therapeutic agents ranging from small molecules to gene therapies. Noninvasive delivery of drugs into the back of the eye or any part of the eye is extremely limited by short precorneal residence time and formidable biological barriers. The eye is a sensitive, sensory organ that requires a high level of material and procedural safety, while achieving therapeutic efficacy.
View Article and Find Full Text PDFDevelopment of synthetic bioarchitectures to improve our understanding of biological systems and produce biosynthetic models with new functions has attracted substantial interest. Synthetic HDL-like phospholipid nanodiscs are a relatively new model of nanoparticles that present a promising carrier for drug delivery and membrane protein investigations. Nanodiscs are soluble nanoscale phospholipid bilayers that are produced based on the self-assembly of phospholipids, membrane scaffold proteins (MSP) and an embedded peptide/protein of interest.
View Article and Find Full Text PDFPurpose: To evaluate a custom-made ocular fluorometer for detection of intensity of light scatter (ILS) from the anterior chamber (A/C) as an objective measure of aqueous flare.
Methods: The fluorometer, equipped with a lock-in amplifier, was employed in the scatter mode to detect ILS from A/C. Measurements were performed with two illumination slit widths of 0.