The donor-acceptor (D-A) type of conjugated polymers has emerged as the paradigm of the third generation of electronically conducting polymers demonstrating improved infrared activity and intrinsic electronic conductivity. Judicious selection of donor (D) and acceptor (A) monomers for copolymerization can further fine-tune these properties. Notably, for such refinement, natural compounds provide many conjugated molecules with various functional groups.
View Article and Find Full Text PDFIn our previous publication, we published a simple, low-cost, and environmentally friendly process for the breaking down of the ilmenite lattice using rotary autoclaving, separation of titanium and iron components, and the conversion of the titanium component to amorphous TiO and phase-specific titanium dioxide nanorods. Here, the separated iron component was converted into iron oxide (magnetite and hematite) and iron oxy-hydroxide (akaganeite, β-FeOOH) nanoparticles. The process flow diagram is presented to explain the steps involved.
View Article and Find Full Text PDFThe current rate of industrial production of titanium dioxide, from natural ilmenite, is around 6500 kT per annum. The two main processes used, namely, sulfate and chloride processes, require concentrated corrosive acids and drastic conditions, such as 1000 °C, in open processes, thus contributing to considerable costs and environmental pollution. To reduce the cost and impact to the environment, a closed process involving a rotatory autoclaving followed by refluxing and stationary solvothermal treatment of ilmenite, below 170 °C, was developed.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder and is identified as the most common cause for dementia. Despite huge global economic burden and the impact on the close family of the patients, there is no definitive cure and thus, improved treatment methods are of need. While memory and cognition are severely affected in AD, exact etiology is yet unknown.
View Article and Find Full Text PDFBMC Complement Altern Med
July 2016
Background: Advanced glycation end products (AGEs) and free radicals are inflammatory mediators and are implicated in many diseases such as diabetes, cancer, rheumatoid arthritis etc. Multi targeted poly herbal drug systems like Nawarathne Kalka (NK) are able to quench the overall effect of these mediators as they contain good combinations of phytochemicals that have least side effects in contrast to modern medicinal drugs. The objectives of this study were to evaluate phytochemical composition, free radical scavenging activity, cytotoxicity and the inhibitory action on the formation of AGEs by aqueous extract of NK.
View Article and Find Full Text PDFPurpose: To determine whether taurine exerts a protective effect on retinal pigment epithelium (RPE) cells exposed to a cytotoxic agent, cytochrome C (cyC), shown previously to induce apoptosis and produce cell death in electrically coupled neighboring cells.
Methods: Monolayer cultures of confluent human RPE (ARPE-19) cells, which express gap-junctional proteins, were incubated in culture medium with or without taurine. After scrape loading cyC into the cells, we assayed these cells for caspase 3 activity and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining to determine the spread of apoptosis.
Programmed cell death (apoptosis) occurs both during normal development and as a result of various pathological conditions. An in vitro system was used to explore the transmission of death signals from apoptotic cells to cells with which they were coupled via gap junctions. Confluent cultures of baby hamster kidney (BHK) cells, stably transfected with the gap-junctional protein connexin32, were scrape loaded with cytochrome C (cyC), a mitochondria-derived apoptotic agent, to introduce the protein into cells injured by the cut.
View Article and Find Full Text PDFSymmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds.
View Article and Find Full Text PDF