Publications by authors named "Udaka K de Silva"

Preparation of soft materials with diverse, customized shapes has been a topic of intense research interest. To this end, we have recently demonstrated photolithographic directed assembly as a strategy for customizing polyelectrolyte complex (PEC) shape. This process uses in situ photopolymerization of an anionic monomer in the presence of a cationic polymer, which drives localized PEC formation at the irradiation sites.

View Article and Find Full Text PDF

When synthetic polyamines, such poly(allylamine hydrochloride) (PAH), are mixed with crosslink-forming multivalent anions, they can undergo complex coacervation. This phenomenon has recently been exploited in various applications, ranging from inorganic material synthesis, to underwater adhesion, to multiple-month release of small, water-soluble molecules. Here, using ibuprofen as a model drug molecule, we show that these coacervates may be especially effective in the long-term release of weakly amphiphilic anionic drugs.

View Article and Find Full Text PDF

Polyelectrolyte complexes (PECs) form through the association of oppositely charged polymers and, due to their attractive properties, such as their mild/simple preparation and stimulus-sensitivity, attract widespread interest. The diverse applications of these materials often require control over PEC shapes. As a versatile approach to achieving such control, we report a new photolithographic directed assembly method for tailoring their structure.

View Article and Find Full Text PDF

Swelling of polymeric hydrogels is sensitive to their cross-link densities. Here, we exploit this principle to prepare self-rupturing gels which are based on a commonly-used, nontoxic, and inexpensive polyelectrolyte, poly(acrylic acid), and are prepared through a simple and low-cost polymerization-based technique. The self-rupture of these covalently cross-linked gels is achieved by preparing them to have highly nonuniform cross-link densities.

View Article and Find Full Text PDF

We report a simple method for preparing solid polyelectrolyte complex (PEC) beads, which provide effective barriers to diffusion and can be used for the multiple-day release of small molecules. Single-phase poly(allylamine) (PAH) and poly(styrenesulfonate) (PSS) mixtures were prepared at pH 11.6 (significantly above the effective pKa of PAH), where the PAH amine groups were deprotonated and therefore neutral.

View Article and Find Full Text PDF