Publications by authors named "Uamporn Siripanyaphinyo"

Chikungunya fever, a mosquito-borne disease manifested by fever, rash, myalgia, and arthralgia, is caused by chikungunya virus (CHIKV), which belongs to the genus of the family Anti-CHIKV IgG from convalescent patients is known to directly neutralize CHIKV, and the state of immunity lasts throughout life. Here, we examined the epitope of a neutralizing mouse monoclonal antibody against CHIKV, CHE19, which inhibits viral fusion and release. docking analysis showed that the epitope of CHE19 was localized in the viral E2 envelope and consisted of two separate segments, an N-linker and a β-ribbon connector, and that its bound Fab fragment on E2 overlapped the position that the E3 glycoprotein originally occupied.

View Article and Find Full Text PDF

To visually examine the early phase of chikungunya virus (CHIKV) infection in target cells, we constructed a virus-like particle (VLP) in which the envelope protein E1 is fused with green fluorescent protein (GFP). This chikungunya VLP-GFP (CHIK-VLP-EGFP), purified by density gradient fractionation, was observed as 60-70 nm-dia. particles and was detected as tiny puncta of fluorescence in the cells.

View Article and Find Full Text PDF

Objectives: Chikungunya virus (CHIKV) is an alphavirus belonging to the Togaviridae family. Alphaviruses cause a chronic non-cytopathic infection in mosquito cells, while they develop a highly cytopathic infection in cells originating from various vertebrates. In this study, we compared the cytopathic effect (CPE) induced by CHIKV in Vero cells and a mosquito cell line, C6/36 cells.

View Article and Find Full Text PDF

Background: Double-stranded RNA (dsRNA) and its mimic, polyinosinic acid: polycytidylic acid [Poly (I:C)], are recognized by toll-like receptor 3 (TLR3) and induce interferon (IFN)-β in many cell types. Poly (I:C) is the most potent IFN inducer. In in vivo mouse studies, intraperitoneal injection of Poly (I:C) elicited IFN-α/β production and natural killer (NK) cells activation.

View Article and Find Full Text PDF

Background: Protease (PR) inhibitors (PIs) were designed against subtype B virus of human immunodeficiency virus type 1 (HIV-1), but believed to retain its activity against most of the other subtypes. CRF01_AE PR (AE-PR) contains background mutations that are presumed to alter the drug susceptibility of PR. In addition, amino acid variations found in HIV-1 Gag potentially affect the drug susceptibility or catalytic efficiency of PR.

View Article and Find Full Text PDF

Hepatitis E virus (HEV) infection in pigs was investigated in two principal swine farming areas in Thailand. Anti-HEV antibodies and HEV RNA in sera were examined in 258 pigs reared on five commercial farms from age 1 to 6.5 months and sows.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) env genes were cloned from blood samples of HIV-1-infected Thai patients, and 35 infectious CRF01_AE envelope glycoprotein (Env)-recombinant viruses were established. In this report, we examined the neutralization susceptibility of these viruses to human monoclonal antibodies, 2G12, IgG1 b12, 2F5 and 4E10, pooled patient plasma, coreceptor antagonists and fusion inhibitor, T-20. The neutralization susceptibility of CRF01_AE Env-recombinant viruses to 2F5, 4E10, patient plasma, coreceptor antagonists and T-20 varied, while most viruses showed low susceptibility to 2G12 and IgG1 b12.

View Article and Find Full Text PDF

CRF01_AE is a major subtype of human immunodeficiency virus type 1 (HIV-1) circulating in Southeast Asia, including Thailand. HIV-1 env genes were amplified by polymerase chain reaction from blood samples of HIV-1-infected patients residing in Thailand in 2006, and cloned into the pNL4-3-derived reporter viral construct. Generated envelope protein (Env)-recombinant virus was examined for its infectivity, and then 35 infectious CRF01_AE Env-recombinant viruses were selected.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the dengue virus non-structural glycoprotein NS1 associates with cell membranes and whether it is found in lipid rafts during infection.
  • Researchers observed that NS1 localized with raft-associated molecules in dengue-infected HEK-293T cells and found a small amount of NS1 that co-fractionated with raft markers in laboratory assays.
  • It was determined that while certain modified forms of NS1 associated with lipid rafts, others did not, suggesting that lipid modification of NS1 is key for its raft association during dengue virus infection.
View Article and Find Full Text PDF

Background: Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by the clonal expansion of blood cells, which are deficient in glycosylphosphatidylinositol anchored proteins (GPI-APs). As PNH frequently occurs during the clinical course of acquired aplastic anemia (AA), it is likely that a process inducing bone marrow failure in AA is responsible for the selection of GPI-AP deficient blood cells or PNH clone.

Objective: To explore the nature and mutation of a PNH clone in AA.

View Article and Find Full Text PDF

Biosynthesis of glycosylphosphatidylinositol (GPI) is initiated by an unusually complex GPI-N-acetylglucosaminyltransferase (GPI-GnT) consisting of at least six proteins. Here, we report that human GPI-GnT requires another component, termed PIG-Y, a 71 amino acid protein with two transmembrane domains. The Burkitt lymphoma cell line Daudi, severely defective in the surface expression of GPI-anchored proteins, was a null mutant of PIG-Y.

View Article and Find Full Text PDF