As myocardial blood flow measurement (MBF) in SPECT systems became recently available, significant effort has been devoted to its validation. For that purpose, we have developed a cardiac phantom that is able to mimic physiological radiotracer variation in the left ventricle cavity and in the myocardium, while performing beating-like motion. The new phantom is integrated inside a standard anthropomorphic torso allowing a realistic tissue attenuation and gamma-ray scattering METHODS AND RESULTS: A mechanical cardiac phantom was integrated in a commercially available anthropomorphic torso.
View Article and Find Full Text PDFBiomech Model Mechanobiol
October 2021
The human conjunctival epithelial cells (HCEC) line the inner sides of the eyelids and the anterior part of the sclera. They include goblet cells that secret mucus into the tear film that protects the ocular surface. The conjunctival epithelium is subjected to mechano-physical stimuli due to eyelid movement during blinking, during wiping and rubbing the eyes, and when exposed to wind and air currents.
View Article and Find Full Text PDFCoronary artery obstruction (CAO), a fatal complication of transcatheter aortic valve replacement (TAVR), is commonly found after Valve-in-Valve implantation inside a degenerated bioprosthetic valve. Leaflet laceration (BASILICA technique) has been proposed to prevent CAO and to potentially reduce the risk of leaflet thrombosis. We have previously demonstrated that this technique can reduce the anchorage forces of the TAVR device, which may lead to future complications.
View Article and Find Full Text PDFThe arterial intima is continuously under pulsatile wall shear stresses (WSS) imposed by the circulating blood. The knowledge of the contribution of smooth muscle cells (SMC) to the response of endothelial cell (EC) to WSS is still incomplete. We developed a co-culture model of EC on top of SMC that mimics the inner in vivo structure of the arterial intima of large arteries.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
October 2021
Short peripheral catheters are ubiquitous in today's healthcare environment, enabling effective and direct delivery of fluids and medications intravenously. A commonly associated complication of their use is thrombophlebitis-thrombus formation-involved inflammation of the vein wall. A novel design of a very short peripheral catheter showed promising results in a pig model in reducing the mechanical irritation to the vein wall.
View Article and Find Full Text PDF