While valleys (energy extrema) are present in all band structures of solids, their preeminent role in determining exciton resonances and dynamics in atomically thin transition metal dichalcogenides (TMDC) is unique. Using two-dimensional coherent electronic spectroscopy, we find that exciton decoherence occurs on a much faster timescale in MoSe_{2} bilayers than that in the monolayers. We further identify two population relaxation channels in the bilayer, a coherent and an incoherent one.
View Article and Find Full Text PDFMultiresistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) cause serious postoperative infections. A skin tolerant far-UVC (< 240 nm) irradiation system for their inactivation is presented here. It uses UVC LEDs in combination with a spectral filter and provides a peak wavelength of 233 nm, with a full width at half maximum of 12 nm, and an irradiance of 44 µW/cm.
View Article and Find Full Text PDFCorrection for 'Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties' by Sabrine Ayari et al., Nanoscale, 2020, 12, 14448-14458, DOI: .
View Article and Find Full Text PDFWe investigate the lateral size tunability of the exciton diffusion coefficient and mobility in colloidal quantum wells by means of line width analysis and theoretical modeling. We show that the exciton diffusion coefficient and mobility in laterally finite 2D systems like CdSe nanoplatelets can be tuned via the lateral size and aspect ratio. The coupling to acoustic and optical phonons can be altered via the lateral size and aspect ratio of the platelets.
View Article and Find Full Text PDF