The aim of this study is to develop a test bench, which integrates different complexity levels and enables in that way a flexible and dynamic testing for mid and long term intervals as well as testing of maximum loads till implant failure of different osteosynthesis systems on the mandible. For this purpose, an analysis of the state of the art regarding existing test benches was combined with interviews of clinical experts to acquire a list of requirements. Based on these requirements a design for a modular test bench was developed.
View Article and Find Full Text PDFBackground: The Plesiosauria (Sauropterygia) are secondary marine diapsids. They are the only tetrapods to have evolved hydrofoil fore- and hindflippers. Once this specialization of locomotion had evolved, it remained essentially unchanged for 135 Ma.
View Article and Find Full Text PDFBackground: Plesiosaurs, diapsid crown-group Sauropterygia, inhabited the oceans from the Late Triassic to the Late Cretaceous. Their most exceptional characteristic are four hydrofoil-like flippers. The question whether plesiosaurs employed their four flippers in underwater flight, rowing flight, or rowing has not been settled yet.
View Article and Find Full Text PDFAnat Rec (Hoboken)
February 2021
Bone and collagen fiber architecture adapt to external mechanical loads. In humans, due to the low insertion of the temporal muscle, mastication does not lead to a physiological loading of the calvaria. Forces applied to the skull by the dural folds can lead to compressive stresses in the calvaria.
View Article and Find Full Text PDFAdaptation of osteology and myology lead to the formation of hydrofoil foreflippers in Cheloniidae (all recent sea turtles except Dermochelys coriacea) which are used mainly for underwater flight. Recent research shows the biomechanical advantages of a complex system of agonistic and antagonistic tension chords that reduce bending stress in bones. Finite element structure analysis (FESA) of a cheloniid humerus is used to provide a better understanding of morphology and microanatomy and to link these with the main flipper function, underwater flight.
View Article and Find Full Text PDF