Publications by authors named "U W Gedde"

The water sorption and solubility of two polymer resin-based dental composite materials were assessed in order to evaluate the effects of immediate post-cure water exposure on the water sensitivity of the composites. Each material was tested with two different light curing setups. The radiant exposure of the two curing setups differed by a factor of 5.

View Article and Find Full Text PDF

In order to increase our fundamental knowledge about high-voltage cable insulation materials, realistic polyethylene (PE) structures, generated with a novel molecular modeling strategy, have been analyzed using first principle electronic structure simulations. The PE structures were constructed by first generating atomistic PE configurations with an off-lattice Monte Carlo method and then equilibrating the structures at the desired temperature and pressure using molecular dynamics simulations. Semicrystalline, fully crystalline and fully amorphous PE, in some cases including crosslinks and short-chain branches, were analyzed.

View Article and Find Full Text PDF

Electrical trees are one reason for the breakdown of insulating materials in electrical power systems. An understanding of the growth of electrical trees plays a crucial role in the development of reliable high voltage direct current (HVDC) power grid systems with transmission voltages up to 1 MV. A section that contained an electrical tree in low-density polyethylene (LDPE) has been visualized in three dimensions (3D) with a resolution of 92 nm by X-ray ptychographic tomography.

View Article and Find Full Text PDF

Controlled aqueous growth of 1 μm flower-shaped ZnO particles with a hierarchical subset of exposed nanosheets represented by {21̅0} crystal faces, followed by annealing at temperatures up to 1000 °C, is presented. The flower-shaped particles showed superior photocatalytic performance compared to the crystal faces of 20 nm ZnO nanoparticles. The photocatalytic reaction rate of the flower-shaped particles before annealing was 2.

View Article and Find Full Text PDF

We use a recently developed scanning probe technique to image with high spatial resolution the injection and extraction of charge around individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. We find that the experimental results are consistent with a simple band structure model where localized electronic states are available in the band gap (trap states) in the vicinity of the nanoparticles. This work offers experimental support to a previously proposed mechanism for enhanced insulating properties of nanocomposite LDPE and provides a powerful experimental tool to further investigate such properties.

View Article and Find Full Text PDF