Publications by authors named "U Urleb"

An ultra-high performance liquid chromatography method for simultaneous determination of tacrolimus impurities in pharmaceutical dosage forms has been developed. Appropriate chromatographic separation was achieved on a BEH C18 column using gradient elution with a total run time of 14 min. The method was applied to analyses of commercial samples and was validated in terms of linearity, precision, accuracy, sensitivity and specificity.

View Article and Find Full Text PDF

An ultra-performance liquid chromatographic method for simultaneous determination of rosuvastatin and rosuvastatin degradation products was developed and optimized by using fractional factorial experimental design. Optimized method is capable to accurately determine all potential degradation products of rosuvastatin. During the optimization the effect of four chosen chromatographic factors was evaluated.

View Article and Find Full Text PDF

The effects of seven different chromatographic parameters and five sample preparation parameters in a high performance liquid chromatography (HPLC) method for assay determination of benzalkonium chloride (BKC) in a nasal formulation were evaluated using two fractional factorial experimental designs. The design space of the analytical method was modeled using Umetrics Modde software and the optimal method conditions were predicted. The optimum HPLC chromatographic conditions were obtained using a Luna CN column (150 x 4.

View Article and Find Full Text PDF

Tacrolimus is macrolide drug that is widely used as a potent immunosuppressant. In the present work compatibility testing was conducted on physical mixtures of tacrolimus with excipients and on compatibility mixtures prepared by the simulation of manufacturing process used for the final drug product preparation. Increase in one major degradation product was detected in the presence of magnesium stearate based upon UHPLC analysis.

View Article and Find Full Text PDF
Article Synopsis
  • A novel compound, N-(5-(5-nitro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)4-oxo-2-thioxo-1,3-thiazolidin-3-yl)nicotinamide, showed competitive inhibition against the MurD enzyme in E. coli, impacting bacterial growth.
  • The binding interactions were analyzed using (1)H/(13)C-HSQC 2D NMR, and molecular dynamics simulations confirmed the stability of the MurD-inhibitor complex.
  • The compound binds in the UDP/MurNAc region, contrasting with existing inhibitors by not engaging the enzyme's C
View Article and Find Full Text PDF