Ethanol consumption is associated with positive, negative, and neutral effects on the skeletal system. Our previous work using a nonhuman primate model of voluntary ethanol consumption showed that chronic ethanol use has an impact on skeletal attributes, most notably on biochemical markers of bone turnover. However, these studies were limited by small sample sizes and resulting lack of statistical power.
View Article and Find Full Text PDFThe hypothalamus and dorsal vagal complex (DVC) are both important for integration of signals that regulate energy balance. Increased leptin transgene expression in either the hypothalamus or DVC of female rats was shown to decrease white adipose tissue and circulating levels of leptin and adiponectin. However, in contrast to hypothalamus, leptin transgene expression in the DVC had no effect on food intake, circulating insulin, ghrelin and glucose, nor on thermogenic energy expenditure.
View Article and Find Full Text PDFChronic heavy alcohol consumption is a risk factor for low trauma bone fracture. Using a non-human primate model of voluntary alcohol consumption, we investigated the effects of 6 months of ethanol intake on cortical bone in cynomolgus macaques (Macaca fascicularis). Young adult (6.
View Article and Find Full Text PDFBone marrow adipose tissue (BMAT) is hypothesized to serve as an expandable/contractible fat depot which functions, in part, to minimize energy requirements for sustaining optimal hematopoiesis. We investigated whether BMAT is required for immune reconstitution following injury. Male wild type (WBB6F1, WT) and BMAT-deficient WBB6F1/J-/J () mice were lethally irradiated.
View Article and Find Full Text PDFChronic heavy alcohol consumption may influence the skeleton by suppressing intracortical bone remodeling which may impact the quality of bone and its mechanical properties. However, this aspect has not been thoroughly assessed in either humans or animal models whose cortical bone microstructure resembles the microstructure of human cortical bone. The current study is the first to investigate the effects of chronic heavy alcohol consumption on various mechanical properties of bone in a non-human primate model with intracortical remodeling.
View Article and Find Full Text PDF