20-Hydroxyecdysone induces poly(A) shortening and the subsequent degradation of transcripts encoding the larval glue protein LGP-1 in Drosophila virilis late third larval instar salivary glands. Degradation concurs with the transient increase of ribonucleolytic activities in the gland cells. In vitro nuclease assays using crude cytoplasmic extracts of ecdysone-treated salivary glands demonstrate degradation to be deadenylation-independent and that the induced ribonucleolytic activities initiate the degradation of the Lgp-1 transcripts in putative single-stranded loop regions.
View Article and Find Full Text PDFIn Drosophila virilis, the three clusters of 5S rRNA genes on chromosome 5 comprise two different gene families (B and C), which differ profoundly in the organization of their spacer sequences. While C-type genes, which are found in two of the clusters, exhibit a true repetitive character, the B-type genes of the third cluster are each embedded in completely different genomic environments. Southern blots of genomic DNA of different D.
View Article and Find Full Text PDFDNA comprising the larval glue protein gene Lgp-3 of Drosophila virilis was isolated from a lambda genomic and a cDNA library. The transcription start site, two polyadenylation sites and the boundaries of the single intron were determined. An open reading frame encoding 379 amino acids was found.
View Article and Find Full Text PDFNaturwissenschaften
July 1990
The primary targets of steroid hormones are genes. For the ecdysone-controlled genes of Drosophila larval glue proteins proximal and distal control elements were identified by mutagenesis and sequence comparison. Their presence is required for the correct stage- and tissue-specific expression of these genes.
View Article and Find Full Text PDFThe gene Lgp-1, which is localized in the intermoult puff 16A of D. virilis polytene chromosomes, encodes the major larval glue protein Igp-1. The gene consists of two exons interrupted by a short intron.
View Article and Find Full Text PDF