The resonant excitation of electronic transitions with coherent laser sources creates quantum coherent superpositions of the involved electronic states. Most time-resolved studies have focused on gases or isolated subsystems embedded in insulating solids, aiming for applications in quantum information. Here, we focus on the coherent control of orbital wavefunctions in the correlated quantum material TbTiO, which forms an interacting spin liquid ground state.
View Article and Find Full Text PDFThe interaction of magnetic order and spontaneous polarization is a fundamental coupling with the prospect for the control of electronic properties and magnetism. The connection among magnetic order, charge localization and associated metal-insulator transition (MIT) are cornerstones for materials control. Materials that combine both effects are therefore of great interest for testing models that claim the occurrence of spontaneous polarization from magnetic and charge order.
View Article and Find Full Text PDFSurface acoustic waves (SAWs) are excited by femtosecond extreme ultraviolet (EUV) transient gratings (TGs) in a room-temperature ferrimagnetic DyCo alloy. TGs are generated by crossing a pair of EUV pulses from a free electron laser with the wavelength of 20.8 nm matching the Co -edge, resulting in a SAW wavelength of Λ = 44 nm.
View Article and Find Full Text PDFQuantifying the dynamics of normal modes and how they interact with other excitations is of central importance in condensed matter. Spin-lattice coupling is relevant to several sub-fields of condensed matter physics; examples include spintronics, high-T superconductivity, and topological materials. However, experimental approaches that can directly measure it are rare and incomplete.
View Article and Find Full Text PDFRecently, a highly ordered Moiré dislocation lattice was identified at the interface between a SrTiO (STO) thin film and the (LaAlO)(SrTaAlO) (LSAT) substrate. A fundamental understanding of the local ionic and electronic structures around the dislocation cores is crucial to further engineer the properties of these complex multifunctional heterostructures. Here, we combine experimental characterization via analytical scanning transmission electron microscopy with results of molecular dynamics and density functional theory calculations to gain insights into the structure and defect chemistry of these dislocation arrays.
View Article and Find Full Text PDF