Background: Spider silk is a tear-resistant and elastic biopolymer that has outstanding mechanical properties. Additionally, exiguous immunogenicity is anticipated for spider silks. Therefore, spider silk represents a potential ideal biomaterial for medical applications.
View Article and Find Full Text PDFThe fatigue performance of explanted in-situ degraded osteofixations/osteosyntheses, fabricated from poly (70L-lactide-co-24DL-lactide-6-trimethylane-carbonate or PLDLLA-TMC) copolymer was compared to that of virgin products. The fatigue test was performed on 21 explants retrieved from 12 women and 6 men; 16-46 years by a custom-designed three-point bend apparatus using a staircase method and a specified failure criterion (an increase of the deflection of the specimen > 1 mm) with run-out designated as "no failure" after 150,000 loading cycles. While all the virgin products showed run-out at 38N, all of the specimens fabricated from explants failed at this load level.
View Article and Find Full Text PDFIn the last two decades it was shown that plants have a great potential for production of specific heterologous proteins. But high cost and inefficient downstream processing are a main technical bottleneck for the broader use of plant-based production technology especially for protein-based products, for technical use as fibres or biodegradable plastics and also for medical applications. High-performance fibres from recombinant spider silks are, therefore, a prominent example.
View Article and Find Full Text PDFThe synthesis of native-sized proteins is a pre-requisite for exploiting the potential of spider silk as a bio-based material. The unique properties of spider silk, such as extraordinary tensile strength and elasticity, result from the highly repetitive nature of spider silk protein motifs. The present report describes the combination of spider silk flagelliform protein (FLAG) production in the endoplasmic reticulum of tobacco plant leaf cells with an intein-based posttranslational protein fusion technology.
View Article and Find Full Text PDFForisomes are chemomechanically active P-protein aggregates found in the phloem of legumes. They can convert chemical energy into mechanical work when induced by divalent metal ions or changes in pH, which control the folding state of individual forisome proteins. We investigated the changing geometric parameters of individual forisomes and the strength and dynamics of the forces generated during this process.
View Article and Find Full Text PDF