Background: Enteric glia cells (EGCs) are essential for the integrity of the bowel. A loss of EGCs leads to a severe inflammation of the intestines. As a diminished EGC network is postulated in Crohn's disease (CD), we aimed to investigate if EGCs could be a target of apoptosis during inflammation in CD, which can be influenced by Brain derived neurotrophic factor (BDNF).
View Article and Find Full Text PDFBackground: Enteric glia cells (EGC) play an important role in the maintenance of intestinal mucosa integrity. During the course of acute Crohn's disease (CD), mucosal EGC progressively undergo apoptosis, though the mechanisms are largely unknown. We investigated the role of Glial-derived neurotrophic factor (GDNF) in the regulation of EGC apoptosis.
View Article and Find Full Text PDFBackground And Aims: Great efforts have been made to predict disease behavior over time and the response to treatment in Crohn's disease (CD). Such understanding could personalize therapy. Early introduction of more aggressive therapies to patients at high risk and no introduction of predictable refractory treatments could become possible.
View Article and Find Full Text PDFBackground: The enteric glia network may be involved in the pathogenesis of inflammatory bowel disease (IBD). Enteric glia cells (EGCs) are the major source of glial-derived neurotrophic factor (GDNF), which regulates apoptosis of enterocytes. The aim of the study was to determine the distribution of EGCs and GDNF during gut inflammation and to elucidate a possible diminished enteric glia network in IBD.
View Article and Find Full Text PDFBackground: Small intestinal bacterial overgrowth (SIBO) is characterized by excessive proliferation of colonic bacterial species in the small bowel. Potential causes of SIBO include fistulae, strictures or motility disturbances. Hence, patients with Crohn's Disease (CD) are especially predisposed to develop SIBO.
View Article and Find Full Text PDF