The preparation of polymer gels via cross-linking of four-arm star-shaped poly(ethylene glycol) (Tetra-PEG) precursors is an attractive strategy to prepare networks with relatively well-defined topologies. Typically, Tetra-PEG gels are obtained by cross-linking heterocomplementary reactive Tetra-PEG precursors. This study, in contrast, explores the cross-linking of self-reactive, thiol-end functional Tetra-PEG macromers to form disulfide-cross-linked gels.
View Article and Find Full Text PDFThe compressibility of soft colloids influences their phase behavior and flow properties, especially in concentrated suspensions. Particle compressibility, which is proportional to the reciprocal of the bulk modulus K, is a key parameter for soft polymer-based particles that can be compressed in crowded environments. Here, microgels with different degrees of cross-linking, i.
View Article and Find Full Text PDFMicrogels are of high interest for applications and as model systems due to their volume response to external stimuli. We use small-angle neutron scattering to measure the form and structure factors of poly(N-isopropylacrylamide) microgels in dilute and concentrated suspensions and find that microgels keep a constant size up to a concentration, above which they deswell. This happens before random-close packing.
View Article and Find Full Text PDFThe behavior of microgels and other soft, compressible colloids depends on particle concentration in ways that are absent in their hard-particulate counterparts. For instance, poly-N-isopropylacrylamide (pNIPAM) microgels can spontaneously deswell and reduce suspension polydispersity when concentrated enough. Despite the pNIPAM network in these microgels is neutral, the key to understanding this distinct behavior relies on the existence of peripheric charged groups, responsible for providing colloidal stability when deswollen, and the associated counterion cloud.
View Article and Find Full Text PDF