Publications by authors named "U Schotten"

Background: Transcriptional dysregulation, possibly affected by genetic variation, contributes to disease development. Due to dissimilarities in development, function, and remodeling during disease progression, transcriptional differences between the left atrial (LA) and right atrial (RA) may provide insight into diseases such as atrial fibrillation.

Methods: Lateral differences in atrial transcription were evaluated in CATCH ME (Characterizing Atrial fibrillation by Translating its Causes into Health Modifiers in the Elderly) using a 2-stage discovery and replication design.

View Article and Find Full Text PDF

Background: Focal pulsed-field ablation (F-PFA) integrated in electroanatomical mapping (EAM) systems allows tailored lesion sets in patients with atrial fibrillation (AF).

Objective: To determine feasibility, safety and 6-months outcome of F-PFA for a tailored substrate-based catheter ablation (CA) approach in patients with AF and advanced atrial substrate.

Methods: Consecutive patients with AF and advanced atrial substrate treated by a F-PFA system (Cardiofocus) through contact-force sensing catheters integrated in EAM systems were prospectively enrolled.

View Article and Find Full Text PDF

Introduction: Repetitive focal and rotational activation patterns are currently used as additional ablation targets for atrial fibrillation (AF). However, there is no evidence that all these detected targets are actual sources of AF. In this paper, we present an approach that detects and ranks AF activation patterns not only based on the degree of pattern repetitiveness but also on the extent to which they are able to entrain their vicinity.

View Article and Find Full Text PDF

Background: In persistent atrial fibrillation (AF), localized extra-pulmonary vein sources may contribute to arrhythmia recurrences after pulmonary vein isolation. This in-silico study proposes a high-density sequential mapping strategy to localize such sources.

Method: Catheter repositioning was guided by repetitive conduction patterns, moving against the prevailing conduction direction (upstream) toward the sources.

View Article and Find Full Text PDF

In 1924, the Dutch physiologist Willem Einthoven received the Nobel Prize in Physiology or Medicine for his discovery of the mechanism of the electrocardiogram (ECG). Anno 2024, the ECG is commonly used as a diagnostic tool in cardiology. In the paper 'Le Télécardiogramme', Einthoven described the first recording of the now most common cardiac arrhythmia: atrial fibrillation (AF).

View Article and Find Full Text PDF