Objective: In this paper, we explore the correlation between performance reporting and the development of inclusive AI solutions for biomedical problems. Our study examines the critical aspects of bias and noise in the context of medical decision support, aiming to provide actionable solutions. Contributions: A key contribution of our work is the recognition that measurement processes introduce noise and bias arising from human data interpretation and selection.
View Article and Find Full Text PDFComput Methods Programs Biomed
December 2024
Background: Data sharing in healthcare is vital for advancing research and personalized medicine. However, the process is hindered by privacy, ethical, and legal challenges associated with patient data. Synthetic data generation emerges as a promising solution, replicating statistical properties of real data while enhancing privacy protection.
View Article and Find Full Text PDFGenerative Adversarial Networks (GANs) have emerged as a powerful tool in artificial intelligence, particularly for unsupervised learning. This systematic review analyzes GAN applications in healthcare, focusing on image and signal-based studies across various clinical domains. Following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we reviewed 72 relevant journal articles.
View Article and Find Full Text PDFThis work aims to develop a novel convolutional neural network (CNN) named ResNet50* to detect various gastrointestinal diseases using a new ResNet50*-based deep feature engineering model with endoscopy images. The novelty of this work is the development of ResNet50*, a new variant of the ResNet model, featuring convolution-based residual blocks and a pooling-based attention mechanism similar to PoolFormer. Using ResNet50*, a gastrointestinal image dataset was trained, and an explainable deep feature engineering (DFE) model was developed.
View Article and Find Full Text PDFSudden Cardiac Death (SCD) stands as a life-threatening cardiac event capable of swiftly claiming lives. Researchers have devised numerous models aimed at automatically predicting SCD through a combination of diverse feature extraction techniques and classifiers. We did a rigorous review of research publications ranging from 2011 to 2023, with a specific focus on the automated prediction of SCD, a growing health concern on a global scale.
View Article and Find Full Text PDF