Publications by authors named "U Ryser"

The water pipes of elongating plant organs are the result of programmed cell death and are formed by the walls of dead and empty protoxylem elements. These protoxylem elements are passively elongated many times by the surrounding tissue before they are replaced and collapse. Well-known adaptations for this unique task include the characteristic secondary wall thickenings, forming rings and helices.

View Article and Find Full Text PDF

LRR-extensins (LRX) form a family of structural cell wall proteins containing a receptor-like domain. The functional analysis of Arabidopsis LRX1 has shown that it is involved in cell morphogenesis of root hairs. In this work, we have studied LRX2, a paralog of LRX1.

View Article and Find Full Text PDF

Antibodies were used to localise polysaccharide and protein networks in the protoxylem of etiolated soybean (Glycine max L.) hypocotyls. The deposition of glycine-rich proteins (GRPs) starts in the cell corners between protoxylem elements and xylem parenchyma cells.

View Article and Find Full Text PDF

Glycine-rich proteins (GRPs) have been found in the cell walls of many higher plants and form a third group of structural protein components of the wall in addition to extensins and proline-rich proteins. The primary sequences of GRPs contain more than 60% glycine. GRPs are localized mainly in the vascular tissue of the plant, and their coding genes provide an excellent system to analyze the molecular basis of vascular-specific gene expression.

View Article and Find Full Text PDF

A major structural component of the cuticle of plants is cutin. Analysis of the function of cutin in vivo has been limited because no mutants with specific defects in cutin have been characterized. Therefore, transgenic Arabidopsis plants were generated that express and secrete a cutinase from Fusarium solani f sp pisi.

View Article and Find Full Text PDF