Since glucose stimulates protein biosynthesis in beta cells concomitantly with the stimulation of insulin release, the possible interaction of both processes was explored. The protein biosynthesis was inhibited by 10 μM cycloheximide (CHX) 60 min prior to the stimulation of perifused, freshly isolated or 22 h-cultured NMRI mouse islets. CHX reduced the insulinotropic effect of 25 mM glucose or 500 μM tolbutamide in fresh but not in cultured islets.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
February 2023
Glucose and alpha-ketoisocaproate, the keto acid analogue of leucine, stimulate insulin secretion in the absence of other exogenous fuels. Their mitochondrial metabolism in the beta-cell raises the cytosolic ATP/ADP ratio, thereby providing the triggering signal for the exocytosis of the insulin granules. However, additional amplifying signals are required for the full extent of insulin secretion stimulated by these fuels.
View Article and Find Full Text PDFThe pancreatic beta-cell transduces the availability of nutrients into the secretion of insulin. While this process is extensively modified by hormones and neurotransmitters, it is the availability of nutrients, above all glucose, which sets the process of insulin synthesis and secretion in motion. The central role of the mitochondria in this process was identified decades ago, but how changes in mitochondrial activity are coupled to the exocytosis of insulin granules is still incompletely understood.
View Article and Find Full Text PDFObserving different kinetics of nutrient-induced insulin secretion in fresh and cultured islets under the same condition we compared parameters of stimulus secretion coupling in freshly isolated and 22-h-cultured NMRI mouse islets. Stimulation of fresh islets with 30 mM glucose after perifusion without nutrient gave a continuously ascending secretion rate. In 22-h-cultured islets the same protocol produced a brisk first phase followed by a moderately elevated plateau, a pattern regarded to be typical for mouse islets.
View Article and Find Full Text PDFObjective: The metabolic amplification of insulin secretion is the sequence of events which enables the secretory response to a fuel secretagogue to exceed the secretory response to a purely depolarizing stimulus. The signals in this pathway are incompletely understood. Here, we have characterized an experimental procedure by which the amplifying response to glucose is reversibly desensitized, while the response to α-ketoisocaproic acid (KIC) is unchanged.
View Article and Find Full Text PDF