Extracellular potassium [K] elevation during synaptic activity retrogradely modifies presynaptic release and astrocytic uptake of glutamate. Hence, local K clearance and replenishment mechanisms are crucial regulators of glutamatergic transmission and plasticity. Based on recordings of astrocytic inward rectifier potassium current I and K-sensitive electrodes as sensors of [K] as well as on in silico modeling, we demonstrate that the neuronal K-Cl co-transporter KCC2 clears local perisynaptic [K] during synaptic excitation by operating in an activity-dependent reversed mode.
View Article and Find Full Text PDFInterferon-γ (IFN-γ), a cytokine with neuromodulatory properties, has been shown to enhance inhibitory transmission. Because early inhibitory neurotransmission sculpts functional neuronal circuits, its developmental alteration may have grave consequences. Here, we investigated the acute effects of IFN-γ on γ-amino-butyric acid (GABA)ergic currents in layer 5 pyramidal neurons of the somatosensory cortex of rats at the end of the first postnatal week, a period of GABA-dependent cortical maturation.
View Article and Find Full Text PDFInterferon-γ (IFN-γ), an important mediator of the antiviral immune response, can also act as a neuromodulator. CNS IFN-γ levels rise acutely in response to infection and therapeutically applied IFN-γ provokes CNS related side effects. Moreover, IFN-γ plays a key role in neurophysiological processes and a variety of chronic neurological and neuropsychiatric conditions.
View Article and Find Full Text PDFWe explored the non-thermal effects of radiofrequency (RF) electromagnetic fields and established a theoretical framework to elucidate their electrophysiological mechanisms. In experiments, we used a preclinical treatment device to treat the human colon cancer cell lines HT-29 and SW480 with either water bath heating (WB-HT) or 13.56 MHz RF hyperthermia (RF-HT) at 42 °C for 60 min and analyzed the proliferation and clonogenicity.
View Article and Find Full Text PDF