Publications by authors named "U Nussbaumer"

An understanding of cytokinesis at the molecular level requires a detailed description of the protein complexes that perform central activities during this process. The proteins Hof1p, Cyk3p, Inn1p and Myo1p each represent one of the four genetically defined and partially complementary pathways of cytokinesis in the yeast Saccharomyces cerevisiae. Here we show that the osmosensor Sho1p is required for correct cell-cell separation.

View Article and Find Full Text PDF

We used a generally applicable strategy to collect and structure the protein interactions of the yeast type II protein phosphatase Ptc1p and its binding partner Nbp2p. The procedure transformed primary unstructured protein interaction data into an ensemble of alternative interaction states. Certain combinations of proteins are allowed in different network configurations.

View Article and Find Full Text PDF

Molecular chaperone heat-shock protein 90 kDa (Hsp90) is known to facilitate the conformational maturation of a diverse range of proteins involved in different signal transduction pathways during development. Recent studies have implicated Hsp90 in transcriptional regulation and an important role for Hsp90 in epigenetic processes has been proposed. Importantly, genetic and pharmacological perturbation of Hsp90 was shown to reveal heritable phenotypic variation and Hsp90 was found to play an important role in buffering genetic and epigenetic variation whose expression led to altered phenotypes.

View Article and Find Full Text PDF

Fibroblast growth factor (FGF) receptor (FGFR) signaling controls the migration of glial, mesodermal, and tracheal cells in Drosophila melanogaster. Little is known about the molecular events linking receptor activation to cytoskeletal rearrangements during cell migration. We have performed a functional characterization of Downstream-of-FGFR (Dof), a putative adapter protein that acts specifically in FGFR signal transduction in Drosophila.

View Article and Find Full Text PDF

The development of the tracheal system of Drosophila melanogaster represents a paradigm for studying the molecular mechanisms involved in the formation of a branched tubular network. Tracheogenesis has been characterized at the morphological, cellular and genetic level and a series of successive, but linked events have been described as the basis for the formation of the complex network of tubules which extend over the entire organism. Tracheal cells stop to divide early in the process of tracheogenesis and the formation of the interconnected network requires highly controlled cell migration events and cell shape changes.

View Article and Find Full Text PDF