Under anaerobiosis, Euglena gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. An important enzyme of this unusual pathway is trans-2-enoyl-CoA reductase (EC 1.3.
View Article and Find Full Text PDFTwo chloroplast phosphoglycerate kinase isoforms from the photosynthetic flagellate Euglena gracilis were purified to homogeneity, partially sequenced, and subsequently cDNAs encoding phosphoglycerate kinase isoenzymes from both the chloroplast and cytosol of E. gracilis were cloned and sequenced. Chloroplast phosphoglycerate kinase, a monomeric enzyme, was encoded as a polyprotein precursor of at least four mature subunits that were separated by conserved tetrapeptides.
View Article and Find Full Text PDFGenomic or cDNA clones for the glycolytic enzyme enolase were isolated from the amitochondriate pelobiont Mastigamoeba balamuthi, from the kinetoplastid Trypanosoma brucei, and from the euglenid Euglena gracilis. Clones for the cytosolic enzyme were found in all three organisms, whereas Euglena was found to also express mRNA for a second isoenzyme that possesses a putative N-terminal plastid-targeting peptide and is probably targeted to the chloroplast. Database searching revealed that Arabidopsis also possesses a second enolase gene that encodes an N-terminal extension and is likely targeted to the chloroplast.
View Article and Find Full Text PDFTwo fructose-1,6-bisphosphate aldolases from the acido- and thermophilic red alga Galdieria sulphuraria were purified to apparent homogeneity and N-terminally microsequenced. Both aldolases had similar biochemical properties such as Km (FBP) (5.6-5.
View Article and Find Full Text PDFHigher plants possess two distinct nuclear-encoded glucose-6-phosphate isomerase (GPI) isoenzymes, a cytosolic enzmye of the Embden-Meyerhof pathway and a chloroplast enzyme essential to storage and mobilization of carbohydrate fixed by the Calvin cycle. We have purified spinach chloroplast GPI to homogeneity, determined amino acid sequences from the active enzyme, and cloned cDNAs for chloroplast and cytosolic GPI isoenzymes from spinach. Sequence comparisons reveal three distantly related families of GPI genes that are non-uniformly distributed among contemporary eubacteria and archaebacteria, suggesting that ancient gene diversity existed for this glycolytic enzyme.
View Article and Find Full Text PDF