Publications by authors named "U Noppeney"

Hallucinations and perceptual abnormalities in psychosis are thought to arise from imbalanced integration of prior information and sensory inputs. We combined psychophysics, Bayesian modeling, and electroencephalography (EEG) to investigate potential changes in perceptual and causal inference in response to audiovisual flash-beep sequences in medicated individuals with schizophrenia who exhibited limited psychotic symptoms. Seventeen participants with schizophrenia and 23 healthy controls reported either the number of flashes or the number of beeps of audiovisual sequences that varied in their audiovisual numeric disparity across trials.

View Article and Find Full Text PDF

We present Audiovisual Moments in Time (AVMIT), a large-scale dataset of audiovisual action events. In an extensive annotation task 11 participants labelled a subset of 3-second audiovisual videos from the Moments in Time dataset (MIT). For each trial, participants assessed whether the labelled audiovisual action event was present and whether it was the most prominent feature of the video.

View Article and Find Full Text PDF

Face-to-face communication relies on the integration of acoustic speech signals with the corresponding facial articulations. In the McGurk illusion, an auditory /ba/ phoneme presented simultaneously with a facial articulation of a /ga/ (i.e.

View Article and Find Full Text PDF

An intriguing question in cognitive neuroscience is whether alpha oscillations shape how the brain transforms the continuous sensory inputs into distinct percepts. According to the alpha temporal resolution hypothesis, sensory signals arriving within a single alpha cycle are integrated, whereas those in separate cycles are segregated. Consequently, shorter alpha cycles should be associated with smaller temporal binding windows and higher temporal resolution.

View Article and Find Full Text PDF

Effective interactions with the environment rely on the integration of multisensory signals: Our brains must efficiently combine signals that share a common source, and segregate those that do not. Healthy ageing can change or impair this process. This functional magnetic resonance imaging study assessed the neural mechanisms underlying age differences in the integration of auditory and visual spatial cues.

View Article and Find Full Text PDF