Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with a high percentage of morbidity. The deciphering and identification of novel targets and tools for intervening with its adverse progression are therefore of immense importance. To address this goal we adopted a specific inhibitor of the intracellular tyrosine kinase Fer, whose expression level is upregulated in PDAC tumors, and is associated with poor prognosis of patients.
View Article and Find Full Text PDFBackground: Spontaneous Bacterial Peritonitis (SBP) poses a significant risk to cirrhosis patients with ascites, emphasizing the critical need for early detection and intervention. This retrospective observational study spanning a decade aimed to devise predictive models for SBP using routine laboratory tests. Additionally, it aimed to propose a novel scoring system to aid SBP diagnosis.
View Article and Find Full Text PDFFer and its sperm and cancer specific variant, FerT, are non-receptor tyrosine kinases which play roles in cancer progression and metastasis. Recent studies have shed light on the regulatory role of these kinases in ensuring proper sperm function. Comparison of the regulatory cascades in which Fer and FerT are engaged in sperm and cancer cells presents an interesting picture, in which similar regulatory interactions of these enzymes are integrated in a similar or different regulatory context in the two cell types.
View Article and Find Full Text PDFThe physiological acrosome reaction occurs after mammalian spermatozoa undergo a process called capacitation in the female reproductive tract. Only acrosome reacted spermatozoon can penetrate the egg zona-pellucida and fertilize the egg. Sperm also contain several mechanisms that protect it from undergoing spontaneous acrosome reaction (sAR), a process that can occur in sperm before reaching proximity to the egg and that abrogates fertilization.
View Article and Find Full Text PDFMetabolic plasticity is a hallmark of the ability of metastatic cancer cells to survive under stressful conditions. The intracellular Fer kinase is a selective constituent of the reprogramed mitochondria and metabolic system of cancer cells. In the current work, we deciphered the modulatory roles of Fer in the reprogrammed metabolic systems of metastatic, lung (H358), non-small cell lung cancer (NSCLC), and breast (MDA-MB-231), triple-negative breast cancer (TNBC), carcinoma cells.
View Article and Find Full Text PDF