Dysferlin-deficient limb girdle muscular dystrophy (LGMD R2), also referred to as dysferlinopathy, can be associated with respiratory muscle weakness as the disease progresses. Clinical practice guidelines recommend biennial lung function assessments in patients with dysferlinopathy to screen for respiratory impairment. However, lack of universal access to spirometry equipment and trained specialists makes regular monitoring challenging.
View Article and Find Full Text PDFBackground And Objectives: The prevalence and progression of respiratory muscle dysfunction in patients with limb girdle muscular dystrophies (LGMDs) has been only partially described to date. Most reports include cross-sectional data on a limited number of patients making it difficult to gain a wider perspective on respiratory involvement throughout the course of the disease and to compare the most prevalent LGMD subtypes.
Methods: We reviewed the results of spirometry studies collected longitudinally in our cohort of patients in routine clinical visits from 2002 to 2020 along with additional clinical and genetic data.
Dysferlinopathy is a muscle disease characterized by a variable clinical presentation and is caused by mutations in the DYSF gene. The Jain Clinical Outcome Study for Dysferlinopathy (COS) followed the largest cohort of patients (n=187) with genetically confirmed dysferlinopathy throughout a three-year natural history study, in which the patients underwent muscle function tests and muscle magnetic resonance imaging (MRI). We previously described the pattern of muscle pathology in this population and established a series of imaging criteria for diagnosis.
View Article and Find Full Text PDFPregnancy and birth in women with neuromuscular conditions has been associated with more rapid disease progression and obstetric complications. This study assessed the impact of functional status and specific diagnosis on patient reported pregnancy and birth outcomes in 26 genetic neuromuscular diseases. Pregnancy and birth outcomes were collected through electronic patient questionnaires and analysed by mobility group and diagnosis.
View Article and Find Full Text PDFMyostatin is a myokine which acts upon skeletal muscle to inhibit growth and regeneration. Myostatin is endogenously antagonised by follistatin. This study assessed serum myostatin and follistatin concentrations as monitoring or prognostic biomarkers in dysferlinopathy, an autosomal recessively inherited muscular dystrophy.
View Article and Find Full Text PDF