The field of optical metrology with its high precision position, rotation and wavefront sensors represents the basis for lithography and high resolution microscopy. However, the on-chip integration-a task highly relevant for future nanotechnological devices-necessitates the reduction of the spatial footprint of sensing schemes by the deployment of novel concepts. A promising route towards this goal is predicated on the controllable directional emission of the fundamentally smallest emitters of light, i.
View Article and Find Full Text PDFThe validity of the superposition principle and of Born's rule are well-accepted tenants of quantum mechanics. Surprisingly, it has been predicted that the intensity pattern formed in a three-slit experiment is seemingly in contradiction with the most conventional form of the superposition principle when exotic looped trajectories are taken into account. However, the probability of observing such paths is typically very small, thus rendering them extremely difficult to measure.
View Article and Find Full Text PDFChirality is an intriguing property of certain molecules, materials or artificial nanostructures, which allows them to interact with the spin angular momentum of the impinging light field. Due to their chiral geometry, they can distinguish between left- and right-hand circular polarization states or convert them into each other. Here we introduce an approach towards optical chirality, which is observed in individual two-dimensional and geometrically mirror-symmetric nanostructures.
View Article and Find Full Text PDFThe orientation of magnetic moments at the (100) surface of antiferromagnetic NiO single crystals is studied by x-ray linear magnetic dichroism in photoemission microscopy. T domains are observed terminating at the surface, with domain boundaries running mostly along in-plane [10] directions. From the detailed polarization dependence we find that the magnetic surface structure of a cleaved crystal is bulk terminated.
View Article and Find Full Text PDF