Proc Natl Acad Sci U S A
December 2024
Strong laser pulses can control superconductivity, inducing nonequilibrium transient pairing by leveraging strong-light matter interaction. Here, we demonstrate theoretically that equilibrium ground-state phonon-mediated superconductive pairing can be affected through the vacuum fluctuating electromagnetic field in a cavity. Using the recently developed ab initio quantum electrodynamical density-functional theory approximation, we specifically investigate the phonon-mediated superconductive behavior of MgB[Formula: see text] under different cavity setups and find that in the strong light-matter coupling regime its superconducting transition temperature T[Formula: see text] can be enhanced at most by [Formula: see text]10% in an in-plane (or out-of-plane) polarized and realistic cavity via photon vacuum fluctuations.
View Article and Find Full Text PDFFloquet engineering has recently emerged as a technique for controlling material properties with light. Floquet phases can be probed with time- and angle-resolved photoelectron spectroscopy (Tr-ARPES), providing direct access to the laser-dressed electronic bands. Applications of Tr-ARPES to date focused on observing the Floquet-Bloch bands themselves, and their build-up and dephasing on sub-laser-cycle timescales.
View Article and Find Full Text PDFWe study low-frequency linearly polarized laser-dressing in materials with valley (graphene and hexagonal-Boron-Nitride) and topological (Dirac- and Weyl-semimetals) properties. In Dirac-like linearly dispersing bands, the laser substantially moves the Dirac nodes away from their original position, and the movement direction can be fully controlled by rotating the laser polarization. We prove that this effect originates from band nonlinearities away from the Dirac nodes.
View Article and Find Full Text PDFWe present an efficient method for propagating the time-dependent Kohn-Sham equations in free space, based on the recently introduced Fourier contour deformation (FCD) approach. For potentials which are constant outside a bounded domain, FCD yields a high-order accurate numerical solution of the time-dependent Schrödinger equation directly in free space, without the need for artificial boundary conditions. Of the many existing artificial boundary condition schemes, FCD is most similar to an exact nonlocal transparent boundary condition, but it works directly on Cartesian grids in any dimension, and runs on top of the fast Fourier transform rather than fast algorithms for the application of nonlocal history integral operators.
View Article and Find Full Text PDF