Publications by authors named "U Lohmann"

The ability of anthropogenic aerosols to freeze supercooled cloud droplets remains debated. In this work, we present observational evidence for the glaciation of supercooled liquid-water clouds at industrial aerosol hot spots at temperatures between -10° and -24°C. Compared with the nearby liquid-water clouds, shortwave reflectance was reduced by 14% and longwave radiance was increased by 4% in the glaciation-affected regions.

View Article and Find Full Text PDF

The representation of cloud processes in models is one of the largest sources of uncertainty in weather forecast and climate projections. While laboratory settings offer controlled conditions for studying cloud processes, they cannot reproduce the full range of conditions and interactions present in natural cloud systems. To bridge this gap, here we leverage weather modification, specifically glaciogenic cloud seeding, to investigate ice growth rates within natural clouds.

View Article and Find Full Text PDF
Article Synopsis
  • Biomass burning (BB) emits aerosols that significantly influence climate factors like radiation balance and cloudiness in tropical areas, but there's a lot of uncertainty in assessments due to reliance on global models.
  • By using observations from both satellite and ground sources, researchers constrained the aerosol absorption optical depth (AAOD) specifically in the Amazon and Africa, identifying major error sources for each region.
  • The study found that correcting these errors can reduce differences in aerosol radiative effects among models by threefold, suggesting a stronger potential for improving the understanding of radiative forcing from biomass burning aerosols.
View Article and Find Full Text PDF

To understand the crystallization of aqueous solutions in the atmosphere, biological specimens, or pharmaceutical formulations, the rate at which ice nucleates from pure liquid water must be quantified. There is still an orders-of-magnitude spread in the homogeneous nucleation rate of water measured using different instruments, with the most important source of uncertainty being that of the measured temperature. Microfluidic platforms can generate hundreds to thousands of monodisperse water-in-oil droplets, unachievable by most other techniques.

View Article and Find Full Text PDF