Background: Renal denervation (RDN) lowers blood pressure (BP) in patients with uncontrolled hypertension. Limited data exist on the effectiveness of different antihypertensive medications following RDN on BP and maladaptive cardiac phenotypes.
Methods: Eighty-nine male spontaneously hypertensive rats with continuous BP recording underwent RDN or sham operation.
Background: In patients with chronic kidney disease (CKD), atrial fibrillation (AF) is highly prevalent and represents a major risk factor for stroke and death. CKD is associated with atrial proarrhythmic remodeling and activation of the sympathetic nervous system. Whether reduction of the sympathetic nerve activity by renal denervation (RDN) inhibits AF vulnerability in CKD is unknown.
View Article and Find Full Text PDFMultiple optical harmonic generation-the multiplication of photon energy as a result of nonlinear interaction between light and matter-is a key technology in modern electronics and optoelectronics, because it allows the conversion of optical or electronic signals into signals with much higher frequency, and the generation of frequency combs. Owing to the unique electronic band structure of graphene, which features massless Dirac fermions, it has been repeatedly predicted that optical harmonic generation in graphene should be particularly efficient at the technologically important terahertz frequencies. However, these predictions have yet to be confirmed experimentally under technologically relevant operation conditions.
View Article and Find Full Text PDFInteraction of relativistic electron beams with high power lasers can both serve as a secondary light source and as a novel diagnostic tool for various beam parameters. For both applications, it is important to understand the dynamics of the inverse Compton scattering mechanism and the dependence of the scattered light's spectral properties on the interacting laser and electron beam parameters. Measurements are easily misinterpreted due to the complex interplay of the interaction parameters.
View Article and Find Full Text PDFUltrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime.
View Article and Find Full Text PDF