Publications by authors named "U Kragh-Hansen"

Congenital analbuminemia (CAA) is an inherited, autosomal recessive disorder with an incidence of 1:1,000,000 live birth. Affected individuals have a strongly decreased concentration, or complete absence, of serum albumin. The trait is usually detected by serum protein electrophoresis and immunochemistry techniques.

View Article and Find Full Text PDF

Partial enzymatic degradation of human serum albumin can lead to the generation of peptides with novel functions or to peptides that might serve as biomarkers for disease. In pathological conditions, biomarkers are possibly produced from the protein in the lysosomes and set free by cell death, or cell death could release acid endoproteases which produce biomarkers by degrading extracellular albumin. Alternatively, lysosomes or secretory granules can be stimulated to release enzymes which produce bioactive peptides from albumin.

View Article and Find Full Text PDF

Familial dysalbuminemic hyperthyroxinemia (FDH-T4) and hypertriiodothyroninemia (FDH-T3) are dominantly inherited syndromes characterized by a high concentration of thyroid hormone in the blood stream. The syndromes do not cause disease, because the concentration of free hormone is normal, but affected individuals are at risk of erroneous treatment. FDH-T4 is the most common cause of euthyroid hyperthyroxinemia in Caucasian populations in which its prevalence is about 1 in 10,000 individuals, but the prevalence can be much higher in some ethnic groups.

View Article and Find Full Text PDF

Sodium octanoate and N-acetyl-L-tryptophan (N-AcTrp) are widely used as stabilizers during pasteurization and storage of albumin products. However, as compared with N-AcTrp, N-acetyl-L-methionine (N-AcMet) is superior in protecting albumin exposed to light during storage. Here, we examine, whether N-AcMet also is better than N-AcTrp to protect albumin against oxidation.

View Article and Find Full Text PDF

Major challenges for the clinical translation of small interfering RNA (siRNA) include overcoming the poor plasma half-life, site-specific delivery and modulation of gene silencing. In this work, we exploit the intrinsic transport properties of human serum albumin to tune the blood circulatory half-life, hepatic accumulation and gene silencing; based on the number of siRNA cholesteryl modifications. We demonstrate by a gel shift assay a strong and specific affinity of recombinant human serum albumin (rHSA) towards cholesteryl-modified siRNA (Kd>1×10(-7)M) dependent on number of modifications.

View Article and Find Full Text PDF