The future of complex plasma research under microgravity condition, in particular on the International Space Station ISS, is discussed. First, the importance of this research and the benefit of microgravity investigations are summarized. Next, the key knowledge gaps, which could be topics of future microgravity research are identified.
View Article and Find Full Text PDFRev Sci Instrum
October 2021
In this paper, we give a detailed description of a novel plasma chamber-the Zyflex chamber-that has been specifically designed for complex/dusty plasma research under reduced gravitational influence as realized during parabolic flight or aboard the International Space Station. The cylindrical, radio-frequency driven discharge device includes a variety of innovations that, for example, allow us to flexibly adjust plasma parameters and its volume via enhanced plasma generation control and a movable, multi-segmented electrode system. The new complex/dusty plasma research tool also supports, due to its overall increased size compared to former space based complex plasma experiments such as PKE-Nefedov or PK-3 Plus, much larger particle systems.
View Article and Find Full Text PDFLow-pressure room-temperature neon, argon, krypton, and air plasmas were studied in magnetic fields up to flux densities of 2.3 T. Filaments appeared parallel to the magnetic field lines, and patterns such as spirals and concentric circles formed in the perpendicular direction.
View Article and Find Full Text PDFPhys Rev Lett
September 2008
We report on the first three-dimensional (3D) complex plasma structure analysis for an experiment that was performed in an elongated discharge tube in the absence of striations. The low frequency discharge was established with 1 kHz alternating dc current through a cylindrical glass tube filled with neon at 30 Pa. The injected particle cloud consisted of monodisperse microparticles.
View Article and Find Full Text PDFA monolayer plasma crystal consisting of micron-sized particles levitated in the sheath of a rf discharge was melted by applying a short electric pulse to two parallel wires located at the height of the particles. Structural properties and the particle temperature were examined during the stage of recrystallization. A liquidlike phase was followed by a transient state characterized by energy release and the restoring of long range translational order while the defect fraction was low.
View Article and Find Full Text PDF