Publications by authors named "U Konietzny"

A novel phytase from Ganoderma australe G24 was produced by submerged cultivation and recovery. Liquid and solid forms of phytase were developed; both types of product were formulated using different additives. Ganoderma australe G24 phytase was very stable in liquid form with NaCl and sodium acetate buffer.

View Article and Find Full Text PDF

Phytases of different origin were covalently bound onto Fe3O4 magnetic nanoparticles (12 nm). Binding efficiencies of all three phytases were well above 70% relative to the number of aldehyde groups available on the surface of the magnetic nanoparticles. Temperature stability for all three phytases was enhanced as a consequence of immobilisation, whereas pH dependence of enzyme activity was not affected.

View Article and Find Full Text PDF

Using a combination of High-Performance Ion Chromatography analysis and kinetic studies, the pathway of myo-inositol hexakisphosphate dephosphorylation by a phytase from a Malaysian waste-water bacterium was established. The data demonstrate that the phytase preferably dephosphorylates myo-inositol hexakisphosphate in a stereospecific way by sequential removal of phosphate groups via D-I(1,2,3,4,5)P(5), D-I(2,3,4,5)P(4), D-I(2,3,4)P(3), D-I(2,3)P(2) to finally I(2)P. It was estimated that more than 90% of phytate hydrolysis occurs via D-I(1,2,3,4,5)P(5).

View Article and Find Full Text PDF

Lactic acid fermentation of cereal flours resulted in a 100 (rye), 95-100 (wheat), and 39-47% (oat) reduction in phytate content within 24 h. The extent of phytate degradation was shown to be independent from the lactic acid bacteria strain used for fermentation. However, phytate degradation during cereal dough fermentation was positively correlated with endogenous plant phytase activity (rye, 6750 mU g(-1); wheat, 2930 mU g(-1); and oat, 23 mU g(-1)), and heat inactivation of the endogenous cereal phytases prior to lactic acid fermentation resulted in a complete loss of phytate degradation.

View Article and Find Full Text PDF

In this study, the behavior of enzyme activity as a function of pH and temperature is modeled on the basis of fundamental considerations. A formulation is developed that includes the activation of enzymes with increasing temperatures and the deactivation of enzymes at higher temperature, together with the effect of protonation and hydroxylation on activity at various constant pH levels. The model is calibrated and validated against an extensive set of experimental data on phytases from seven different origins.

View Article and Find Full Text PDF