Background: Brazil has the second highest case count of Hansen's disease (leprosy, HD), but factors contributing to transmission in highly endemic areas of the country remain unclear. Recent studies have shown associations of helminth infection and leprosy, supporting a biological plausibility for increased leprosy transmission in areas with helminths. However, spatial analyses of the overlap of these infections are limited.
View Article and Find Full Text PDFIntroduction: Dengue cases in the Americas in 2024 have reached record highs, especially in Brazil. However, surveillance remains suboptimal and new methods are needed to monitor Dengue Virus (DENV) spread. To assess whether wastewater-based epidemiology would be a useful tool, we investigated the presence of DENV RNA in dengue patients' urine and oral fluid from an endemic area to inform how shedding in these fluids occurs and provide insight for wastewater surveillance.
View Article and Find Full Text PDFRwanda achieved unprecedented malaria control gains from 2000 to 2010, but cases increased 20-fold between 2011 and 2017. Vector control challenges and environmental changes were noted as potential explanations, but no studies have investigated causes of the resurgence or identified which vector species drove transmission. We conducted a retrospective study in four sites in eastern Rwanda that conducted monthly entomological surveillance and outpatient malaria care.
View Article and Find Full Text PDFAfrican Swine Fever (ASF) is a contagious viral disease that infects wild and domesticated swine. In early 2022, the virus was found in wild boar in the Apennine mountains of mainland Italy. Since then, it has spread from wild boar to domesticated swine.
View Article and Find Full Text PDFTo evaluate whether oral fluids (OF) and urine can serve as alternative, non-invasive samples to diagnose chikungunya virus (CHIKV) infection via RT-qPCR, we employed the same RNA extraction and RT-qPCR protocols on paired serum, OF and urine samples collected from 51 patients with chikungunya during the acute phase of the illness. Chikungunya patients were confirmed through RT-qPCR in acute-phase sera (N = 19), IgM seroconversion between acute- and convalescent-phase sera (N = 12), or IgM detection in acute-phase sera (N = 20). The controls included paired serum, OF and urine samples from patients with non-arbovirus acute febrile illness (N = 28) and RT-PCR-confirmed dengue (N = 16).
View Article and Find Full Text PDF