Publications by authors named "U Kautsky"

The assumed dominance of chloride (Cl) in terrestrial ecosystems is challenged by observations of extensive formation of organically bound Cl (Cl), resulting in large soil Cl storage and internal cycling. Yet, little is known about the spatial distribution of Cl in ecosystems. We quantified patterns of Cl distribution in different habitats along a boreal hillslope moisture gradient ranging from relatively dry upland coniferous forests to wet discharge areas dominated by alder.

View Article and Find Full Text PDF

A methodology for addressing the biosphere in safety assessments for solid radioactive waste disposal was developed through theme 1 of the IAEA coordinated research project on BIOsphere Modelling and ASSessment (BIOMASS) that ran from 1996 to 2001. This methodology provided guidance on how the biosphere can be addressed in safety assessments for disposal of solid radioactive waste. Since the methodology was developed, it has proven useful and has been widely referenced in assessments in a diversity of contexts encompassing both near-surface and deep geological disposal of solid radioactive waste.

View Article and Find Full Text PDF

The International Atomic Energy Agency has coordinated an international project addressing enhancements of methods for modelling in post-closure safety assessments of solid radioactive waste disposal. The project used earlier published work from the IAEA biosphere modelling and assessment (BIOMASS) project to further develop methods and techniques. The task was supported by a parallel on-going project within the BIOPROTA forum.

View Article and Find Full Text PDF

Ongoing national programmes and International forums have in recent decades developed and enhanced methods and strategies in how to address the characterisation of potentially suitable sites for radioactive waste repositories. Siting processes, site selection and site investigation programmes have been conducted for near surface and geological repositories and plans for construction are in progress or have already been implemented. Lessons learned from these national and international programmes are available and results are published.

View Article and Find Full Text PDF

In the Fall of 2016 a workshop was held which brought together over 50 scientists from the ecological and radiological fields to discuss feasibility and challenges of reintegrating ecosystem science into radioecology. There is a growing desire to incorporate attributes of ecosystem science into radiological risk assessment and radioecological research more generally, fueled by recent advances in quantification of emergent ecosystem attributes and the desire to accurately reflect impacts of radiological stressors upon ecosystem function. This paper is a synthesis of the discussions and consensus of the workshop participant's responses to three primary questions, which were: 1) How can ecosystem science support radiological risk assessment? 2) What ecosystem level endpoints potentially could be used for radiological risk assessment? and 3) What inference strategies and associated methods would be most appropriate to assess the effects of radionuclides on ecosystem structure and function? The consensus of the participants was that ecosystem science can and should support radiological risk assessment through the incorporation of quantitative metrics that reflect ecosystem functions which are sensitive to radiological contaminants.

View Article and Find Full Text PDF