Purpose: To investigate the effectiveness of mitochondrial-targeted antioxidant mitoquinone (MitoQ) and nontargeted antioxidant idebenone (Idb) in alleviating mitochondrial dysfunction in corneal endothelial cells (CEnCs).
Methods: In vitro experiments were conducted using immortalized normal human corneal endothelial cells (HCEnC-21T; SVN1-67F) and Fuchs endothelial corneal dystrophy (FECD) cells (SVF5-54F; SVF3-76M). Cells were pretreated with MitoQ or Idb and then exposed to menadione (MN) with simultaneous antioxidant treatment.
Fuchs Endothelial Corneal Dystrophy (FECD) is an aging disorder characterized by expedited loss of corneal endothelial cells (CEnCs) and heightened DNA damage compared to normal CEnCs. We previously established that ultraviolet-A (UVA) light causes DNA damage and leads to FECD phenotype in a non-genetic mouse model. Here, we demonstrate that acute treatment with chemical stressor, menadione, or physiological stressors, UVA, and catechol estrogen (4-OHE), results in an early and increased activation of ATM-mediated DNA damage response in FECD compared to normal CEnCs.
View Article and Find Full Text PDFThank you for your thoughtful and insightful commentary on our paper, "Outcomes of Boston Keratoprosthesis Type I Implantation in Poland: A Retrospective Study on 118 Patients" [...
View Article and Find Full Text PDF