Publications by authors named "U Hergenhahn"

Charge transfer between molecules lies at the heart of many chemical processes. Here, we focus on the ultrafast electron dynamics associated with the formation of charge-transfer-to-solvent (CTTS) states following X-ray absorption in aqueous solutions of Na, Mg, and Al ions. To explore the formation of such states in the aqueous phase, liquid-jet photoemission spectroscopy is employed.

View Article and Find Full Text PDF
Article Synopsis
  • Molecules in solvation shells have unique properties that differ from those of the solvent in bulk and can influence chemical reactions.
  • X-ray-based spectroscopies are commonly used to examine these properties but often fail to selectively analyze solvation-shell molecules.
  • New "non-local" X-ray processes, like intermolecular Coulombic decay (ICD), offer a promising way to study the first solvation shell of cations and to measure water molecules' electron binding energies more effectively.
View Article and Find Full Text PDF

X-ray-induced damage is one of the key topics in radiation chemistry. Substantial damage is attributed to low-energy electrons and radicals emerging from direct inner-shell photoionization or produced by subsequent processes. We apply multi-electron coincidence spectroscopy to X-ray-irradiated aqueous solutions of inorganic ions to investigate the production of low-energy electrons (LEEs) in a predicted cascade of intermolecular charge- and energy-transfer processes, namely electron-transfer-mediated decay (ETMD) and interatomic/intermolecular Coulombic decay (ICD).

View Article and Find Full Text PDF

Liquid-jet photoemission spectroscopy (LJ-PES) allows for a direct probing of electronic structure in aqueous solutions. We show the applicability of the approach to biomolecules in a complex environment, exploring site-specific information on the interaction of adenosine triphosphate in the aqueous phase (ATP) with magnesium (Mg), highlighting the synergy brought about by the simultaneous analysis of different regions in the photoelectron spectrum. In particular, we demonstrate intermolecular Coulombic decay (ICD) spectroscopy as a new and powerful addition to the arsenal of techniques for biomolecular structure investigation.

View Article and Find Full Text PDF

We present a combined experimental and theoretical investigation of the radiationless decay spectrum of an O 1s double core hole in liquid water. Our experiments were carried out using liquid-jet electron spectroscopy from cylindrical microjets of normal and deuterated water. The signal of the double-core-hole spectral fingerprints (hypersatellites) of liquid water is clearly identified, with an intensity ratio to Auger decay of singly charged O 1s of 0.

View Article and Find Full Text PDF