Gases, such as nitrogen dioxide, formaldehyde and benzene, are toxic even at very low concentrations. However, so far there are no low-cost sensors available with sufficiently low detection limits and desired response times, which are able to detect them in the ranges relevant for air quality control. In this work, we address both, detection of small gas amounts and fast response times, using epitaxially grown graphene decorated with iron oxide nanoparticles.
View Article and Find Full Text PDFPlasmonic response of free charges confined in nanostructures of plasmonic materials is a powerful means for manipulating the light-material interaction at the nanoscale and hence has influence on various relevant technologies. In particular, plasmonic materials responsive in the mid-infrared range are technologically important as the mid-infrared is home to the vibrational resonance of molecules and also thermal radiation of hot objects. However, the development of the field is practically challenged with the lack of low-loss materials supporting high quality plasmons in this range of the spectrum.
View Article and Find Full Text PDFTunable nanostructures that feature a high surface area are firmly attached to a conducting substrate and can be fabricated efficiently over significant areas, which are of interest for a wide variety of applications in, for instance, energy storage and catalysis. We present a novel approach to fabricate Fe nanoparticles using a pulsed-plasma process and their subsequent guidance and self-organization into well-defined nanostructures on a substrate of choice by the use of an external magnetic field. A systematic analysis and study of the growth procedure demonstrate that nondesired nanoparticle agglomeration in the plasma phase is hindered by electrostatic repulsion, that a polydisperse nanoparticle distribution is a consequence of the magnetic collection, and that the formation of highly networked nanotruss structures is a direct result of the polydisperse nanoparticle distribution.
View Article and Find Full Text PDFWe report the empirical discovery of an exceptionally high cross-B electron transport rate in magnetized plasmas, in which transverse currents are driven with abruptly applied high power. Experiments in three different magnetic geometries are analyzed, covering several orders of magnitude in plasma density, magnetic field strength, and ion mass. It is demonstrated that a suitable normalization parameter is the dimensionless product of the electron (angular) gyrofrequency and the effective electron-ion momentum transfer time, omega(ge)tau(EFF), by which all of diffusion, cross-resistivity, cross-B current conduction, and magnetic field diffusion can be expressed.
View Article and Find Full Text PDF