KDM4 histone demethylases became an exciting target for inhibitor development as the evidence linking them directly to tumorigenesis mounts. In this study, we set out to better understand the binding cavity using an X-ray crystallographic approach to provide a detailed landscape of possible interactions within the under-investigated region of KDM4. Our design strategy was based on utilizing known KDM binding motifs, such as nicotinic acid and tetrazolylhydrazides, as core motifs that we decided to enrich with flexible tails to map the distal histone binding site.
View Article and Find Full Text PDFBackground: Transcription factors regulate gene expression by binding to transcription factor binding sites (TFBSs). Most models for predicting TFBSs are based on position weight matrices (PWMs), which require a specific motif to be present in the DNA sequence and do not consider interdependencies of nucleotides. Novel approaches such as Transcription Factor Flexible Models or recurrent neural networks consequently provide higher accuracies.
View Article and Find Full Text PDFThe phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. The deficiency of PLD3 leads to the slowed degradation of nucleic acids in lysosomes and chronic activation of nucleic acid-specific intracellular toll-like receptors.
View Article and Find Full Text PDFTryptophan hydroxylases catalyze the first and rate-limiting step in the biosynthesis of serotonin, a well-known neurotransmitter that plays an important role in multiple physiological functions. A reduction of serotonin levels, especially in the brain, can cause dysregulation leading to depression or insomnia. In contrast, overproduction of peripheral serotonin is associated with symptoms like carcinoid syndrome and pulmonary arterial hypertension.
View Article and Find Full Text PDFStudying mechanisms of bacterial biofilm generation is of vital importance to understanding bacterial cell-cell communication, multicellular cohabitation principles, and the higher resilience of microorganisms in a biofilm against antibiotics. Biofilms of the nonpathogenic, gram-positive soil bacterium serve as a model system with biotechnological potential toward plant protection. Its major extracellular matrix protein components are TasA and TapA.
View Article and Find Full Text PDF