Publications by authors named "U Harlander"

Using two laboratory-scale conceptual fluid dynamic models of the mid-latitude atmospheric circulation we investigate the statistical properties of pointwise temperature signals obtained in long experiment runs. We explore how the average "equator-to-pole" temperature contrast influences the range and the jump distribution of extreme temperature fluctuations, the ratio of the frequencies of rapid cooling and warming events, and the persistence of "weather" in the set-ups. We find simple combinations of the control parameters-temperature gradient, rotation rate and geometric dimensions-which appear to determine certain scaling properties of these statistics, shedding light on the underlying dynamics of the Rossby wave-related elements of the mid-latitude weather variability.

View Article and Find Full Text PDF

Previous comparisons of experimental data with nonlinear numerical simulations of density stratified Taylor-Couette (TC) flows revealed nonlinear interactions of strato-rotational instability (SRI) modes that lead to periodic changes in the SRI spirals and their axial propagation. These pattern changes are associated with low-frequency velocity modulations that are related to the dynamics of two competing spiral wave modes propagating in opposite directions. In the present paper, a parameter study of the SRI is performed using direct numerical simulations to evaluate the influence of the Reynolds numbers, the stratification, and of the container geometry on these SRI low-frequency modulations and spiral pattern changes.

View Article and Find Full Text PDF

Pronounced global cooling around the Eocene-Oligocene transition (EOT) was a pivotal event in Earth's climate history, controversially associated with the opening of the Drake Passage. Using a physical laboratory model we revisit the fluid dynamics of this marked reorganization of ocean circulation. Here we show, seemingly contradicting paleoclimate records, that in our experiments opening the pathway yields higher values of mean water surface temperature than the "closed" configuration.

View Article and Find Full Text PDF

There is an ongoing debate in the literature about whether the present global warming is increasing local and global temperature variability. The central methodological issues of this debate relate to the proper treatment of normalised temperature anomalies and trends in the studied time series which may be difficult to separate from time-evolving fluctuations. Some argue that temperature variability is indeed increasing globally, whereas others conclude it is decreasing or remains practically unchanged.

View Article and Find Full Text PDF