Publications by authors named "U Halisdemir"

Hematite (α-FeO) is a photoelectrode for the water splitting process because of its relatively narrow bandgap and abundance in the earth's crust. In this study, the photoexcited state of a hematite thin film was investigated with femtosecond oxygen K-edge X-ray absorption spectroscopy (XAS) at the PAL-XFEL in order to follow the dynamics of its photoexcited states. The 200 fs decay time of the hole state in the valence band was observed via its corresponding XAS feature.

View Article and Find Full Text PDF

In order to bring the diverse functionalities of transition metal oxides into modern electronics, it is imperative to integrate oxide films with controllable properties onto the silicon platform. Here, we present asymmetric LaMnO/BaTiO/SrTiO superlattices fabricated on silicon with layer thickness control at the unit-cell level. By harnessing the coherent strain between the constituent layers, we overcome the biaxial thermal tension from silicon and stabilize c-axis oriented BaTiO layers with substantially enhanced tetragonality, as revealed by atomically resolved scanning transmission electron microscopy.

View Article and Find Full Text PDF

Copper tungstate (CuWO) is an important semiconductor with a sophisticated and debatable electronic structure that has a direct impact on its chemistry. Using the PAL-XFEL source, we study the electronic dynamics of photoexcited CuWO. The Cu L X-ray absorption spectrum shifts to lower energy upon photoexcitation, which implies that the photoexcitation process from the oxygen valence band to the tungsten conduction band effectively increases the charge density on the Cu atoms.

View Article and Find Full Text PDF

Epitaxial growth of SrTiO (STO) on silicon greatly accelerates the monolithic integration of multifunctional oxides into the mainstream semiconductor electronics. However, oxide superlattices (SLs), the birthplace of many exciting discoveries, remain largely unexplored on silicon. In this work, LaNiO /LaFeO SLs are synthesized on STO-buffered silicon (Si/STO) and STO single-crystal substrates, and their electronic properties are compared using dc transport and X-ray absorption spectroscopy.

View Article and Find Full Text PDF

To benefit from the diverse functionalities of perovskite oxides in silicon-based complementary metal oxide semiconductor (CMOS) technology, integrating oxides into a silicon platform has become one of the major tasks for oxide research. Using the deposition of LaMnO/SrTiO (STO) superlattices (SLs) as a case study, we demonstrate that (001) single oriented oxide SLs can be integrated on Si using various template techniques, including a single-layer buffer of STO prepared by molecular beam epitaxy (MBE) and pulsed laser deposition, a multilayer buffer of Y-stabilized zirconia/CeO/LaNiO/STO, and STO-coated two-dimensional nanosheets of CaNbO (CNO) and reduced graphene oxide. The textured SL grown on STO-coated CNO nanosheets shows the highest crystallinity, owing to the small lattice mismatch between CNO and STO as well as less clamping from a Si substrate.

View Article and Find Full Text PDF