Publications by authors named "U Hacksell"

Parkinson's disease psychosis (PDP) is a condition that may develop in up to 60 % of Parkinson's patients, and is a major reason for nursing home placement for those affected. There are no FDA approved drugs for PDP but low doses of atypical anti-psychotic drugs (APDs) are commonly prescribed off-label. Only low-dose clozapine has shown efficacy in randomized controlled trials, but all APDs have black box warnings related to the increased mortality and morbidity when used in elderly demented patients.

View Article and Find Full Text PDF

No safe, tolerated, and effective treatment for Parkinson's disease psychosis (PDP) is available; however, clozapine and quetiapine are often used off-label. An ideal PDP drug should have a therapeutic window that alleviates psychotic symptoms at doses that allow for maintained motor control and do not cause sedation. The present study determined the effective doses of quetiapine, clozapine, and the nondopaminergic, selective 5-HT2A inverse agonist/antagonist, pimavanserin, in an animal model of PDP and compared them with the doses that caused dopamine blockade and sedation.

View Article and Find Full Text PDF

(-)-OSU6162 has promise for treating Parkinson's disease, Huntington's disease and schizophrenia. Behavioral tests evaluating the locomotor effects of (-) and (+)-OSU6162 on 'low activity' animals (reserpinized mice and habituated rats) and 'high activity' animals (drug naive mice and non-habituated rats) revealed that both enantiomers of OSU6162 had dual effects on behavior, stimulating locomotor activity in 'low activity' animals and inhibiting locomotor activity in 'high activity' animals. To elucidate a plausible mechanism of action for their behavioral effects, we evaluated the intrinsic actions of (-)- and (+)-OSU6162, and a collection of other antipsychotic and antiparkinsonian agents at 5-HT2A and D2 receptors in functional assays with various degrees of receptor reserve, including cellular proliferation, phosphatidyl inositol hydrolysis, GTPγS and beta-arrestin recruitment assays.

View Article and Find Full Text PDF

A series of novel isochromanone based urotensin II receptor agonists have been synthesized and evaluated for their activity using a functional cell based assay (R-SAT). Several potent and efficacious derivatives were identified, with 3-(3,4-dichlorophenyl)-6,7-dimethyl-3-(2-dimethylaminoethyl)isochroman-1-one being the most potent compound showing an EC₅₀-value of 51 nM, thereby being the most potent compound so far within the isochromanone series. In addition, two other heterocyclic systems (isochromanes and tetrahydroisoquinolinones) were investigated and these derivatives were found to be both potent and efficacious.

View Article and Find Full Text PDF