Background: Fermentation of sugars derived from plant biomass feedstock is crucial for sustainability. Hence, utilizing customized enzymatic cocktails to obtain oligosaccharides instead of monomers is an alternative fermentation strategy to produce prebiotics, cosmetics, and biofuels. This study developed an engineered strain of Aspergillus niger producing a tailored cellulolytic cocktail capable of partially degrading sugarcane straw to yield cellooligosaccharides.
View Article and Find Full Text PDFKomagataella phaffii (Pichia pastoris) is a methylotrophic yeast that is favored by industry and academia mainly for expression of heterologous proteins. However, its full potential as a host for bioproduction of valuable compounds cannot be fully exploited as genetic tools are lagging behind those that are available for baker's yeast. The emergence of CRISPR-Cas9 technology has significantly improved the efficiency of gene manipulations of K.
View Article and Find Full Text PDFThe success of forward metabolic engineering depends on a thorough understanding of the behaviour of a heterologous metabolic pathway within its host. We have recently described CRI-SPA, a high-throughput gene editing method enabling the delivery of a metabolic pathway to all strains of the Saccharomyces cerevisiae knock-out library. CRI-SPA systematically quantifies the effect of each modified gene present in the library on product synthesis, providing a complete map of host:pathway interactions.
View Article and Find Full Text PDFBackground: Coronary artery fistulas (CAFs) are abnormal communications between the coronary arteries and the heart chambers, arteries, or veins, potentially leading to significant shunting, myocardial ischaemia and heart failure. Computed tomographic (CT) angiography or conventional invasive angiography is the reference standard for the diagnosis of coronary fistulas. The fistula anatomy can become very complex, which makes surgical or interventional planning challenging.
View Article and Find Full Text PDF