Dendritic cells (DC) play a key role in the adaptive immune response due to their ability to present antigens and stimulate naïve T cells. Many bacteria and viruses can efficiently target DC, resulting in impairment of their immunostimulatory function or elimination. Hence, the DC compartment requires replenishment following infection to ensure continued operational readiness of the adaptive immune system.
View Article and Find Full Text PDFThe poliovirus receptor (PVR) is a ubiquitously expressed glycoprotein involved in cellular adhesion and immune response. It engages the activating receptor DNAX accessory molecule (DNAM)-1, the inhibitory receptor TIGIT, and the CD96 receptor with both activating and inhibitory functions. Human cytomegalovirus (HCMV) down-regulates PVR expression, but the significance of this viral function in vivo remains unknown.
View Article and Find Full Text PDFVesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC).
View Article and Find Full Text PDFA considerable part of the herpesvirus life cycle takes place in the host nucleus. While much progress has been made to understand the molecular processes required for virus replication in the nucleus, much less is known about the temporal and spatial dynamics of these events. Previous studies have suggested that nuclear capsid motility is directed and dependent on actin filaments (F-actin), possibly using a myosin-based, ATP-dependent mechanism.
View Article and Find Full Text PDFTuberculosis remains a global health problem so that a more effective vaccine than bacillus Calmette-Guérin is urgently needed. Cytomegaloviruses persist lifelong in vivo and induce powerful immune and increasing ("inflationary") responses, making them attractive vaccine vectors. We have used an m1-m16-deleted recombinant murine CMV (MCMV) expressing Mycobacterium tuberculosis Ag 85A to show that infection of mice with this recombinant significantly reduces the mycobacterial load after challenge with M.
View Article and Find Full Text PDF