Publications by authors named "U Guerra"

Background: 18F-fluorodeoxyglucose (18F-FDG) positron-emission-tomography (PET) allows detection of cerebral metabolic alterations in neurological diseases vs. normal aging. We assess age- and sex-related brain metabolic changes in healthy subjects, exploring impact of activity normalization methods.

View Article and Find Full Text PDF

Purpose: FDG-PET is an established supportive biomarker in dementia with Lewy bodies (DLB), but its diagnostic accuracy is unknown at the mild cognitive impairment (MCI-LB) stage when the typical metabolic pattern may be difficultly recognized at the individual level. Semiquantitative analysis of scans could enhance accuracy especially in less skilled readers, but its added role with respect to visual assessment in MCI-LB is still unknown.

Methods: We assessed the diagnostic accuracy of visual assessment of FDG-PET by six expert readers, blind to diagnosis, in discriminating two matched groups of patients (40 with prodromal AD (MCI-AD) and 39 with MCI-LB), both confirmed by in vivo biomarkers.

View Article and Find Full Text PDF

Positron emission tomography (PET) with 18 F-Fluorodeoxyglucose ( 18 F-FDG) plays an outstanding role in the diagnostic work-up of dementia. Amyloid PET imaging is a complementary imaging technique for the early detection of Alzheimer disease (AD). β-amyloid precursor protein ( APP ), Presenilin-1 ( PSEN1 ) and Presenilin-2 ( PSEN2 ) are the 3 main causative genes responsible for autosomal dominant early-onset Alzheimer disease (EOAD).

View Article and Find Full Text PDF

Considering the similarities with other pandemics due to respiratory virus infections and subsequent development of neurological disorders (e.g. encephalitis lethargica after the 1918 influenza), there is growing concern about a possible new wave of neurological complications following the worldwide spread of SARS-CoV-2.

View Article and Find Full Text PDF

Purpose: To develop and validate a semi-quantification method (time-delayed ratio, TDr) applied to amyloid PET scans, based on tracer kinetics information.

Methods: The TDr method requires two static scans per subject: one early (~ 0-10 min after the injection) and one late (typically 50-70 min or 90-100 min after the injection, depending on the tracer). High perfusion regions are delineated on the early scan and applied onto the late scan.

View Article and Find Full Text PDF