Bifunctional peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the copper-, ascorbate-, and O2-dependent cleavage of C-terminal glycine-extended peptides, N-acylglycines, and the bile acid glycine conjugates to the corresponding amides and glyoxylate. Two known metabolites of aspirin, salicyluric acid and gentisuric acid, are also substrates for PAM, leading to the formation of salicylamide and gentisamide. The time course for O2 consumption and glyoxylate production indicates that salicylurate amidation is a two-step reaction.
View Article and Find Full Text PDFBifunctional peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the copper-, ascorbate-, and O(2)-dependent cleavage of C-terminal glycine-extended peptides and N-acylglycines to the corresponding amides and glyoxylate. The alpha-amidated peptides and the long-chain acylamides are hormones in humans and other mammals. Bile acid glycine conjugates are also substrates for PAM leading to the formation of bile acid amides.
View Article and Find Full Text PDFBifunctional peptidylglycine alpha-amidating enzyme (alpha-AE) catalyzes the O2-dependent conversion of C-terminal glycine-extended prohormones to the active, C-terminal alpha-amidated peptide and glyoxylate. We show that alpha-AE will also catalyze the oxidative cleavage of N-acylglycines, from N-formylglycine to N-arachidonoylglycine. N-Formylglycine is the smallest amide substrate yet reported for alpha-AE.
View Article and Find Full Text PDF