Publications by authors named "U E Mai"

Introduction: Coaching interventions in graduate medical education have proven successful in increasing technical and communication skills, reducing errors, and improving patient care. Effective stakeholder engagement enhances the relevance, value, and long-term sustainability of interventions, yet specific strategies for stakeholder engagement remain uncertain. The purpose of this article is to identify strategies to foster engagement of diverse stakeholder groups in coaching interventions.

View Article and Find Full Text PDF

Dating phylogenetic trees to obtain branch lengths in time units is essential for many downstream applications but has remained challenging. Dating requires inferring substitution rates that can change across the tree. While we can assume to have information about a small subset of nodes from the fossil record or sampling times (for fast-evolving organisms), inferring the ages of the other nodes essentially requires extrapolation and interpolation.

View Article and Find Full Text PDF

Motivation: Recently developed spatial lineage tracing technologies induce somatic mutations at specific genomic loci in a population of growing cells and then measure these mutations in the sampled cells along with the physical locations of the cells. These technologies enable high-throughput studies of developmental processes over space and time. However, these applications rely on accurate reconstruction of a spatial cell lineage tree describing both past cell divisions and cell locations.

View Article and Find Full Text PDF
Article Synopsis
  • Relationships among avian lineages remain unresolved due to factors like species diversity, phylogenetic methods, and selection of genomic regions.
  • An analysis of 363 bird species' genomes reveals a well-supported evolutionary tree but highlights significant discrepancies among certain groups.
  • Findings suggest that after the Cretaceous-Palaeogene extinction, birds experienced increased population size and diversification, which offers a new foundational understanding for future research in avian evolution.
View Article and Find Full Text PDF

Genomes are typically mosaics of regions with different evolutionary histories. When speciation events are closely spaced in time, recombination makes the regions sharing the same history small, and the evolutionary history changes rapidly as we move along the genome. When examining rapid radiations such as the early diversification of Neoaves 66 Mya, typically no consistent history is observed across segments exceeding kilobases of the genome.

View Article and Find Full Text PDF