Background: PVC containers are plasticized with di(2-ethyl)hexylphthalate (DEHP) or a related phthalate. The toxicity of DEHP has been questioned. It has been proposed to use butyryltrihexylcitrate (BTHC) as the plasticizer.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
April 2001
Oxidant stress, in vivo or in vitro, is known to induce oxidative changes in human red blood cells (RBCs). Our objective was to examine the effect of augmenting RBC glutathione (GSH) synthesis on 1) degenerative protein loss and 2) RBC chemokine- and free radical-scavenging functions in the oxidatively stressed human RBCs by using banked RBCs as a model. Packed RBCs were stored up to 84 days at 1-6 degrees C in Adsol or in the experimental additive solution (Adsol fortified with glutamine, glycine, and N-acetyl-L-cysteine).
View Article and Find Full Text PDFFree Radic Res
November 2000
We have previously demonstrated that the loss of glutathione (GSH) and GSH-peroxidase (GSH-PX) in banked red blood cells (RBCs) is accompanied by oxidative modifications of lipids, proteins and loss of membrane integrity. The objective of this study was to determine whether artificial increases in antioxidant (GSH) or antioxidant enzyme (catalase) content could protect membrane damage in the banked RBCs following an oxidant challenge. RBCs stored at 1-6 degrees C for 0, 42 and 84 days in a conventional additive solution (Adsol) were subjected to oxidative stress using ferric/ascorbic acid (Fe/ASC) before and after enriching them with GSH or catalase using a hypotonic lysis-isoosmotic resealing procedure.
View Article and Find Full Text PDFFree Radic Biol Med
November 1999
In banked human erythrocytes (RBCs), biochemical and functional changes are accompanied with vesiculation and reduced in vivo survival. We hypothesized that some of these changes might have resulted from oxidative modification of membrane lipids, proteins, or both as a result of atrophy of the antioxidant defense system(s). In banked RBCs, we observed a time-dependent increase in protein clustering, especially band 3; carbonyl modification of band 4.
View Article and Find Full Text PDFPrevious studies from our laboratory have shown that under blood bank storage conditions red blood cell (RBC) ATP and lipid content were better maintained in a glycerol-containing hypotonic experimental additive solution (EAS 25) than in the conventional storage medium Adsol. The objective of this study was to determine the mechanism of the protective effect of EAS 25, by measuring transmembrane phospholipid asymmetry and the membrane integrity of stored RBCs. Split units of packed RBCs were stored in either EAS 25 or Adsol.
View Article and Find Full Text PDF