Cancer is a perilous life-threatening disease, and attempts are constantly being made to create multinuclear transition metal complexes that could lead to the development of potential anticancer medications and administration procedures. Hence, this work aims to design, synthesize, characterize, and assess the anticancer efficacy of ruthenium -cymene complexes incorporating ,'-bis(4-substituted benzoyl)hydrazine ligands. The formation of the new complexes (Ru2H1-Ru2H3) has been thoroughly established by elemental analysis, and FT-IR, UV-vis, NMR, and HR-MS spectral techniques.
View Article and Find Full Text PDFBreast cancer is the most dangerous type in women and its fatality rate has increased over the past decade. To develop more potent and target-specific breast cancer drugs, six arene ruthenium(II) complexes (1-6) containing naphthoyl benzhydrazine ligands (NL1-NL3) were synthesized and characterized by analytical and spectroscopic (infrared, UV-visible, NMR and HR-MS) methods. The SC-XRD analysis of 1 and 6 demonstrates the bis N^O bidentate binding nature of ligands to ruthenium ions and a pseudo-octahedral geometry around the Ru(II) ion.
View Article and Find Full Text PDFHerein, the impact of surface charge tailored of gold nanorods (GNRs) on breast cancer cells (MCF-7 and MDA-MB-231) upon conjugation with triphenylphosphonium (TPP) for improved photodynamic therapy (PDT) targeting mitochondria was studied. The salient features of the study are as follows: (i) positive (CTAB@GNRs) and negative (PSS-CTAB@GNRs) surface-charged gold nanorods were developed and characterized; (ii) the mitochondrial targeting efficiency of gold nanorods was improved by conjugating TPP molecules; (iii) the conjugated nanoprobes (TPP-CTAB@GNRs and TPP-PSS-CTAB@GNRs) were evaluated for PDT in the presence of photosensitizer (PS), 5-aminolevulinic acid (5-ALA) in breast cancer cells; (iv) both nanoprobes (TPP-CTAB@GNRs and TPP-PSS-CTAB@GNRs) induce apoptosis, damage DNA, generate reactive oxygen species, and decrease mitochondrial membrane potential upon 5-ALA-based PDT; and (v) 5-ALA-PDT of two nanoprobes (TPP-CTAB@GNRs and TPP-PSS-CTAB@GNRs) impact cell signaling (PI3K/AKT) pathway by upregulating proapoptotic genes and proteins. Based on the results, we confirm that the positively charged (rapid) nanoprobes are more advantageous than their negatively (slow) charged nanoprobes.
View Article and Find Full Text PDFAlthough gold nanoparticles based photodynamic therapy (PDT) were reported to improve efficacy and specificity, the impact of surface charge in targeting cancer is still a challenge. Herein, we report gold nanotriangles (AuNTs) tuned with anionic and cationic surface charge conjugating triphenylphosphonium (TPP) targeting breast cancer cells with 5-aminoleuvinic acid (5-ALA) based PDT, in vitro. Optimized surface charge of AuNTs with and without TPP kill breast cancer cells.
View Article and Find Full Text PDFMicroplastics (MPs) are one of the marine debris, accumulated in the ocean as a result of the successive breakdown of a large piece of plastics over several years. MPs are about less than 5 mM, have a detrimental impact on marine organisms/products (seafood/sea salts) and therefore they are considered as a global environmental pollutant. The occurrence and impact of MPs in commercial sea salts that are consumed by humans are not well studied so far.
View Article and Find Full Text PDF