Publications by authors named "U David"

While the effect of amplification-induced oncogene expression in cancer is known, the impact of copy-number gains on "bystander" genes is less understood. We create a comprehensive map of dosage compensation in cancer by integrating expression and copy number profiles from over 8000 tumors in The Cancer Genome Atlas and cell lines from the Cancer Cell Line Encyclopedia. Additionally, we analyze 17 cancer open reading frame screens to identify genes toxic to cancer cells when overexpressed.

View Article and Find Full Text PDF

Spindle assembly checkpoint (SAC) inhibitors are a recently developed class of drugs, which perturb chromosome segregation during cell division, induce chromosomal instability (CIN), and eventually lead to cell death. The molecular features that determine cellular sensitivity to these drugs are not fully understood. We recently reported that aneuploid cancer cells are preferentially sensitive to SAC inhibition.

View Article and Find Full Text PDF

Ataxia-telangiectasia (A-T) is a pleiotropic genome instability syndrome resulting from the loss of the homeostatic protein kinase ATM. The complex phenotype of A-T includes progressive cerebellar degeneration, immunodeficiency, gonadal atrophy, interstitial lung disease, cancer predisposition, endocrine abnormalities, chromosomal instability, radiosensitivity, and segmental premature aging. Cultured skin fibroblasts from A-T patients exhibit premature senescence, highlighting the association between genome instability, cellular senescence, and aging.

View Article and Find Full Text PDF

Over the last two decades, the diagnosis and treatment of breast cancer patients have considerably improved. However, brain metastases remain a major clinical challenge and a leading cause of mortality. Thus, a better understanding of the pathways involved in the metastatic cascade is essential.

View Article and Find Full Text PDF

Aneuploidy, an abnormal chromosome composition, is a major contributor to cancer development and progression and an important determinant of cancer therapeutic responses and clinical outcomes. Despite being recognized as a hallmark of human cancer, the exact role of aneuploidy as a 'driver' of cancer is still largely unknown. Identifying the specific genetic elements that underlie the recurrence of common aneuploidies remains a major challenge of cancer genetics.

View Article and Find Full Text PDF